

A Geno Technology, Inc. (USA) brand name

Thiophilic Adsorption

Complete Kit For the Purification of Immunoglobulins with Thiophilic Resin

Kit Components	1
Storage Conditions	1
Introduction	
Specifications	
Additional Components	
Important	2
Preparation Before Use	
Sample Preparation	
Procedure For Immunoglobulin Purification	2
Procedure For General Protein Purification	
References	
Poloted Products	2

KIT COMPONENTS Cat. # 786-266

Part.#	Description	Size
067T	Thiophilic Resin Column (3ml resin)	4 columns
041T	TA Equilibration Buffer	1L
040T	TA Elution Buffer	1L
042T	TA Regeneration Buffer	250ml

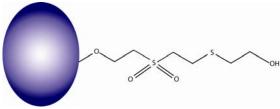


Figure 1: Thiophilic resin structure

STORAGE CONDITIONS

Shipped at ambient temperature. Upon receipt store at 4°C, do NOT freeze.

INTRODUCTION

Thiophilic adsorption or thiophilic chromatography is a routinely used technique for the low cost, simple purification of immunoglobulins. Thiophilic adsorption was first developed by Porath et al¹ in 1984 and is a group specific, salt-dependent purification technique that has distinct affinity towards immunoglobulins and α_2 -macroglobulins. The thiophilic adsorption works on the principle that some proteins in high salt are able to bind to an immobilized ligand that contains a sulfone group in proximity to a thioether group (Figure 1). The bound proteins are then eluted in decreasing salt concentrations.

G-Biosciences' Thiophilic resin binds immunoglobulins from serum, ascites or tissue culture supernatants and the purified immunoglobulins are then eluted in a near neutral aqueous buffer. G-Biosciences' Thiophilic resin has a high binding capacity (~20mg/ml human IgG/ml resin) and a broad specificity for various species' immunoglobulin molecules.

Thiophilic adsorption has been used to purify other proteins including horseradish peroxidase², glutathione peroxidase³, lactate dehydrogenase⁴ and allergens⁵.

SPECIFICATIONS

- Capacity: >20mg human IgG/ml resin
- **Support:** 6% highly cross-linked agarose

ADDITIONAL COMPONENTS

- Anhydrous sodium sulfate (Na₂SO₄) (CAS # 7757-82-6)
- 20% Ethanol

IMPORTANT

Perform couplings at ~pH8.0, lower pH will result in greater protein binding, however non-immunoglobulin proteins will also bind.

PREPARATION BEFORE USE

Sample Preparation

- 1. Add 71mg anhydrous sodium sulfate for every 1ml whole serum, ascites or tissue culture supernatant to give a 0.5M final concentration of sodium sulfate.
- 2. Stir gently to dissolve the sodium sulfate.
- 3. Centrifuge at 10,000xg for 20 minutes and carefully remove the clarified supernatant.
- 4. Filter the sample through a0.45 µm filter to prevent clogging of the thiophilic resin.
- 5. Store on ice until ready to use.

PROCEDURE FOR IMMUNOGLOBULIN G PURIFICATION

- 1. Snap off the bottom tab and place into a 15ml collection tube and allow the storage buffer to drain out.
- 2. Equilibrate the resin with 4 resin bed volumes of Equilibration Buffer. Discard the flow through.
- 3. Apply 3-9ml prepared sample to the column and allow to pass through. Save the flow through to monitor the non-bound proteins.
- 4. Wash the column with 5-10 resin bed volumes of Equilibration Buffer. Monitor flow through at 280nm to determine when all non-bound proteins have been washed from the resin.
- 5. Elute the bound immunoglobulin with 12 resin bed volumes of Elution Buffer collection the eluent in 3ml fractions. Monitor the immunoglobulin elution by monitoring absorbance at 280nm against water.
- 6. Regenerate the column by washing with 5 resin bed volumes of elution buffer, followed by 5 resin bed volumes of Regeneration Buffer.
- 7. Store the column in 20% ethanol at 4°C.

PROCEDURE FOR GENERAL PROTEIN PURIFICATION

Thiophilic resin can purify a variety of proteins. A general protocol is given below; however this protocol should be optimized for the protein of interest. In order to develop successful protein purification a suitable assay for the protein of interest is required.

- 1. Divide 5ml cellular/tissue lysate containing the protein of interest into 5 equal aliquots.
- 2. Saturate each aliquot with sodium sulfate to give final concentrations of 0.1, 0.2, 0.3, 0.4 and 0.5M sodium sulfate.
- 3. Centrifuge the lysates at 10,000xg for 20 minutes to clarify the lysates.
- 4. Use the cleared lysates in the "Procedure For Immunoglobulin Purification" and compare the eluted protein of interest concentration with that of the initial clarified lysates.

NOTE: If the protein of interest fails to bind the resin then switch the salt to ammonium sulfate and use higher concentration ($\leq 4M$). Repeat the steps outline above.

REFERENCES

- 1. Porath, J. et al (1984) In Physical Chemistry of Colloids and Macromolecules, Ed. Ranby, B. (Upsala, Sweden), p. 137-142
- 2. Chaga, G. et al (1992) Biomed. Chromatogr. 6:172-176
- 3. Huang, K. et al (1994) Biol. Trace Elem. Res. 46:91-102
- 4. Kminkova, M. & Kucera, J. (1998) Prep. Biochem. Biotechnol. 28:313-317
- 5. Goubran-Bostros, H. et al (1998) J. Chromatogr. B. Biomed. Sci. Appl. 710:57-65

RELATED PRODUCTS

- I. **Pearl™ IgG Purification Resin** (Cat. # 786-800, 786-801). Allows for the one-step purification of the immunoglobulin G (IgG) antibodies from serum. The resin binds the high abundant, non-IgG proteins (i.e. albumin) and allows the IgG molecules to pass through in a physiological buffer. The purified IgG molecules can be stored or used in further downstream applications without further clean-up, such as ammonium sulfate precipitation.
- II. **Immobilized Protein A** (Cat. # 786-283). For the binding and purification of IgG molecules. Different affinity compared to Protein G.
- III. **Immobilized Protein G** (Cat. # 786-284). For the binding and purification of IgG molecules. Different affinity compared to Protein A.
- IV. **Fab Preparation Kit (Micro)** (Cat. # 786-273). For the generation of Fab fragments from 25-250µg IgG.
- V. $\mathbf{F}(\mathbf{ab'})_2$ **Preparation Kit** (Micro) (Cat. #786-275). For the generation of $F(ab')_2$ fragments from 25-250 μ g IgG.
- VI. Mouse IgG_1 Fab and $F(ab')_2$ Preparation Kit (Micro) (Cat. # 786-277). For the generation of Fab and $F(ab')_2$ fragments from 25-250 μ g IgG.

For additional related products, visit www.GBiosciences.com.

Last saved: 8/10/2011 CMH