

Product Manual

E.Z.N.A.[®] Stool DNA Kit

D4015-00	5 preps
D4015-01	50 preps
D4015-02	200 preps

Manual Date: January 2019 Revision Number: v8.1

For Research Use Only

- Omega Bio-tek, Inc.
 400 Pinnacle Way, Suite 450
 Norcross, GA 30071
- () www.omegabiotek.com

770-931-8400

(a) 770-931-0230

info@omegabiotek.com

(in) omega-bio-tek

(**b**) omegabiotek

 (\mathbf{f}) omegabiotek

E.Z.N.A.[®] Stool DNA Kit

Table of Contents

Introduction and Overview	2
Illustrated Protocol	3
Kit Contents/Storage and Stability	4
Preparing Reagents	5
Stool DNA Protocol (Pathogen Detection)	б
Stool DNA Protocol (Human DNA Detection)	10
Stool DNA Protocol (Large Volume)	14
Troubleshooting Guide	19
Ordering	21

Manual Date: January 2019 Revision Number: v8.1

The E.Z.N.A.[®] Stool DNA Kit allows rapid and reliable isolation of high-quality total DNA from fresh and frozen stool samples. Up to 200 mg stool samples can be processed in less than 60 minutes. The system combines the reversible nucleic acid-binding properties of our HiBind[®] matrix with the speed and versatility of spin column technology to eliminate humic acid, polysaccharides, phenolic compounds, and enzyme inhibitors from stool samples. Purified DNA is suitable for PCR, restriction digestion, and hybridization techniques. There are no organic extractions, thus reducing plastic waste and hands-on time allowing multiple samples to be processed in parallel.

Stool samples typically contain many compounds that can degrade DNA and inhibit downstream enzymatic reactions. E.Z.N.A.[®] Stool DNA Kit uses an unique cHTR Reagent and P2 Buffer that can remove inhibitory substances from stool samples.

If using the E.Z.N.A.[®] Stool DNA Kit for the first time, please read this booklet to become familiar with the procedures. Frozen or fresh stool samples are homogenized and then lysed in a specially formulated buffer containing detergent. Proteins, polysaccharides, and cellular debris are subsequently precipitated with P2 Buffer after a heat-freeze step. Contaminants are further removed by cHTR Reagent during a quick centrifuge step. Binding conditions are adjusted by adding BL Buffer and the sample is applied to a HiBind[®] DNA Mini Column. Two rapid wash steps remove trace contaminants, and pure DNA is eluted with Elution Buffer. Purified DNA can be directly used in downstream applications without the need for further purification.

New in this Edition:

- April 2017: The amount of 2 mL Collection Tubes has been reduced to reflect the actual number of tubes required in the protocols.
- December 2016: cHTR Reagent has replaced HTR Reagent.
- September 2015: SLB Buffer is now called SLX-Mlus Buffer. This is a name change only. The component has not changed.

Illustrated Protocol

Transfer Supernatant and Bind DNA

Product Number	D4015-00	D4015-01	D4015-02
Preparations	5 Preps	50 Preps	200 Preps
HiBind [®] DNA Mini Columns	5	50	200
2 mL Collection Tubes	10	100	400
SLX-Mlus Buffer	12 mL	100 mL	400 mL
DS Buffer	1.2 mL	10 mL	40 mL
SP2 Buffer	5 mL	35 mL	125 mL
BL Buffer	5 mL	35 mL	125 mL
VHB Buffer	2.2 mL	15 mL	66 mL
DNA Wash Buffer	2 mL	20 mL	3 x 20 mL
Elution Buffer	5 mL	30 mL	100 mL
Glass Beads X	1.2 g	12 g	45 g
cHTR Reagent	1.2 mL	12 mL	50 mL
Proteinase K Solution	150 μL	1.5 mL	6.0 mL
User Manual	\checkmark	\checkmark	✓

Storage and Stability

All of the E.Z.N.A.[®] Stool DNA Kit components are guaranteed for at least 12 months from the date of purchase when stored as follows. cHTR Reagent should be stored at 2-8°C for long-term use. Proteinase K can be stored at room temperature for up to 12 months. For long-term storage, store Proteinase K at 2-8°C. All other components can be stored at room temperature. During shipment or storage in cool ambient conditions, precipitates may form in some buffers. Dissolve such deposits by warming the solution at 65°C and gently shaking.

1. Dilute VHB Buffer with 100% ethanol as follows and store at room temperature.

Kit	100% Ethanol to be Added
D4015-00	2.8 mL
D4015-01	19 mL
D4015-02	84 mL

2. Dilute DNA Wash Buffer with 100% ethanol as follows and store at room temperature.

Kit	100% Ethanol to be Added
D4015-00	8 mL
D4015-01	80 mL
D4015-02	80 mL per bottle

E.Z.N.A.[®] Stool DNA Kit - Protocol for Pathogen Detection

Materials and Equipment to be Supplied by User:

- Microcentrifuge capable of at least 13,000 x g
- Nuclease-free 1.5 and 2 mL microcentrifuge tubes
- Water baths, heat blocks, or incubators capable of 65°C and 70°C
- Vortexer
- 100% ethanol
- Ice bucket
- Optional: RNase A (20 mg/mL) and incubator capable of 37°C
- Optional: Incubator or heat block capable of 95°C

Before Starting:

- Prepare an ice bucket.
- Prepare VHB Buffer and DNA Wash Buffer according to the Preparing Reagent section on Page 5.
- Set a water bath, heat block, or incubator to 70°C.
- Heat Elution Buffer to 65°C.
- Optional: for RNase digestion, set an incubator to 37°C.
- Optional: for gram-positive bacteria, set an incubator to 95°C.
- 1. Add up to 200 mg stool sample in a 2 mL microcentrifuge tube (not provided) containing 200 mg Glass Beads X. Place the tube on ice.

Note: If the sample is liquid, add 200 μ L sample into the centrifuge tube. Cut the end of the pipet tip to make pipetting easier. If the sample is frozen, use a spatula to scrape the sample into the tube. Do not thaw the frozen sample until the SLX-Mlus Buffer is added into the tube.

2. Add 540 µL SLX-Mlus Buffer. Vortex at maximum speed for 10 minutes or until the stool sample is competely homogenized.

Note: We recommend a mechanical disruptor instrument such as the SPEX Geno/ Grinder 2010 or a flat bed vortexer with tape.

3. Add 60 μL DS Buffer and 20 μL Proteinase K Solution. Vortex or pipet up and down to mix thoroughly.

 Incubate at 70°C for 10 minutes (13 minutes if frozen). Vortex the sample twice during incubation.

Optional: For isolation of DNA from gram-positive bacteria, do a second incubation at 95°C for 5 minutes. Continue to Step 5.

- 5. Add 200 µL SP2 Buffer. Vortex at maximum speed for 30 seconds.
- 6. Let sit on ice for 5 minutes.
- 7. Centrifuge at maximum speed (\geq 13,000 x g) for 5 minutes.
- 8. Carefully aspirate 400 μL supernatant to a new 1.5 mL microcentrifuge tube (not provided). Do not to disturb the pellet or transfer any debris.
- 9. Add 200 µL cHTR Reagent. Vortex at maximum speed for 10 seconds.

Note: cHTR Reagent must be completely resuspended before use. Cut the end of a 1 mL tip to make it easier to pipet the cHTR Reagent.

- 10. Let sit at room temperature for 2 minutes.
- 11. Centrifuge at maximum speed for 2 minutes.
- 12. Transfer 250 µL supernatant to a new 1.5 mL microcentrifuge tube.

Optional: If RNA-free DNA is required, add 10 μ L RNase A (not provided). Vortex to mix thoroughly. Incubate at 37°C for 3 minutes. Continue to Step 13.

13. Add 250 μL BL Buffer and 250 μL 100% ethanol. Vortex at maximum speed for 10 seconds.

- 14. Insert a HiBind[®] DNA Mini Column into a 2 mL Collection Tube.
- 15. Transfer the entire sample from Step 13, including any precipitates that may have formed, to the HiBind[®] DNA Mini Column.
- 16. Centrifuge at maximum speed for 1 minute.
- 17. Discard the filtrate and the collection tube.
- 18. Transfer the HiBind[®] DNA Mini Column into a new 2 mL Collection Tube.
- 19. Add 500 μ L VHB Buffer.

Note: VHB Buffer must be diluted with 100% ethanol before use. Please see the Preparing Reagents section on Page 5 for instructions.

- 20. Centrifuge at maximum speed for 30 seconds.
- 21. Discard the filtrate and reuse the collection tube.
- 22. Add 700 µL DNA Wash Buffer.

Note: DNA Wash Buffer must be diluted with 100% ethanol before use. Please see the Preparing Reagents section on Page 5 for instructions.

- 23. Centrifuge at maximum speed for 1 minute.
- 24. Discard the filtrate and reuse collection tube.
- 25. Repeat Steps 22-24 for a second DNA Wash Buffer wash step.

26. Centrifuge the empty HiBind[®] DNA Mini Column at maximum speed for 2 minutes at room temperature.

Note: It is important to dry the column membrane before elution. Residual ethanol may interfere with downstream applications.

- 27. Transfer the column into a new 1.5 mL microcentrifuge tube.
- 28. Add 100-200 μL Elution Buffer heated to 65°C directly to the center of the HiBind* matrix.
- 29. Let sit at room temperature for 2 minutes.
- 30. Centrifuge at maximum speed for 1 minute.
- 31. Store DNA at -20°C.

Note: For maximum PCR robustness, it is recommended to add BSA to a final concentration of 0.1 μ g/ μ L to the PCR reaction mixture. Hot-start PCR is also recommended to increase the specificity. Try to use the minimal amount of elute possible for downstream applications.

E.Z.N.A.® Stool DNA Kit - Protocol for Human DNA Detection

Materials and Equipment to be Supplied by User:

- Centrifuge with adaptor for 15 mL centrifuge tubes capable of 4,000 x g
- Microcentrifuge capable of at least 13,000 x g
- Nuclease-free 1.5 mL and 2 mL microcentrifuge tubes
- 15 mL centrifuge tubes
- Water baths, heat blocks, or incubators capable of 65°C and 70°C
- Vortexer
- 100% ethanol
- Ice bucket
- Optional: RNase A (20 mg/mL) and incubator capable of 37°C
- Optional: Incubator or heat block capable of 95°C

Before Starting:

- Prepare an ice bucket.
- Prepare VHB Buffer and DNA Wash Buffer according to the Preparing Reagent section on Page 5.
- Set a water bath, heat block, or incubator to 70°C.
- Heat Elution Buffer to 65°C.
- Optional: for RNase digestion, set an incubator to 37°C.
- Optional: for gram-positive bacteria, set an incubator to 95°C.
- 1. Add up to 200 mg stool sample in a 15 mL centrifuge tube (not provided) and place the tube on ice. Add 1.6 mL SLX-Mlus Buffer. Vortex at maximum speed for 1 minute or until the stool sample is completely homogenized.

Note: If the sample is liquid, add 200 μ L sample into the centrifuge tube. Cut the end of the pipet tip to make pipetting easier. If the sample is frozen, use a spatula to scrape the sample into the tube. Do not thaw the frozen sample until the SLX-Mlus Buffer is added into the tube.

- 2. Add 180 μL DS Buffer. Invert 5 times to mix.
- 3. Centrifuge at maximum speed (\geq 4,000 x g) for 3 minutes.
- 4. Transfer 1.5 mL supernatant into a new 15 mL centrifuge tube.

- 5. Add 600 µL SP2 Buffer. Vortex at maximum speed for 10 seconds.
- 6. Let sit on ice for 5 minutes.
- 7. Centrifuge at maximum speed for 3 minutes.
- Transfer 600 μL cleared supernatant to a new 2 mL microcentrifuge tube (not provided).
- 9. Add 200 µL cHTR Reagent. Vortex at maximum speed for 10 seconds.

Note: cHTR Reagent must be completely resuspended before use. Cut the end of a 1 mL tip to make it easier to pipet the cHTR Reagent.

- 10. Let sit at room temperature for 2 minutes.
- 11. Centrifuge at maximum speed (\geq 13,000 x g) for 2 minutes.
- 12. Transfer 600 μ L supernatant into a new 2 mL microcentrifuge tube.
- 13. Add 20 µL Proteinase K Solution. Vortex to mix thoroughly.
- 14. Add 600 μ L BL Buffer. Vortex at maximum speed for 10 seconds.
- 15. Incubate at 70°C for 10 minutes. Vortex the sample twice during incubation.
- 16. Centrifuge briefly to remove any liquid drops from the tube lid.
- 17. Add 600 μL 100% ethanol. Vortex at maximum speed for 10 seconds.
- 18. Centrifuge briefly to remove any liquid drops from the tube lid.

- 19. Insert a HiBind® DNA Mini Column into a 2 mL Collection Tube.
- 20. Transfer 600 μL sample from Step 18, including any precipitates that may have formed, to the HiBind® DNA Mini Column.
- 21. Centrifuge at maximum speed for 1 minute.
- 22. Discard the filtrate and reuse collection tube.
- 23. Repeat Steps 20-22 until all of the sample has been transferred to the HiBind® DNA Mini Column.
- 24. Transfer the HiBind® DNA Mini Column to a new 2 mL Collection Tube.
- 25. Add 500 μL VHB Buffer.

Note: VHB Buffer must be diluted with 100% ethanol before use. Please see the Preparing Reagents section on Page 5 for instructions.

- 26. Centrifuge at maximum speed for 30 seconds.
- 27. Discard the filtrate and reuse collection tube.
- 28. Add 700 µL DNA Wash Buffer.

Note: DNA Wash Buffer must be diluted with 100% ethanol before use. Please see the Preparing Reagents section on Page 5 for instructions.

- 29. Centrifuge at maximum speed for 30 seconds.
- 30. Discard the filtrate and reuse collection tube.
- 31. Repeat Steps 28-30 for a second DNA Wash Buffer wash step.

32. Centrifuge the empty HiBind[®] DNA Mini Column at maximum speed for 2 minutes at room temperature.

Note: It is important to dry the column membrane before elution. Residual ethanol may interfere with downstream applications.

- 33. Transfer the column into a clean 1.5 mL microcentrifuge tube (not provided).
- 34. Add 100-200 μL Elution Buffer heated to 65°C directly to the center of the HiBind* matrix.
- 35. Let sit at room temperature for 2 minutes.
- 36. Centrifuge at maximum speed for 1 minute.
- 37. Store DNA at -20°C.

Note: For maximum PCR robustness, it is recommended to add BSA to a final concentration of 0.1 μ g/ μ L to the PCR reaction mixture. Hot-start PCR is also recommended to increase the specificity. Try to use the minimal amount of elute possible for downstream applications.

E.Z.N.A.[®] Stool DNA Kit - Protocol for Large Volumes of Stool

The following protocol is designed for cases where the target DNA is not distributed homogeneously in the stool sample. Using large volumes of starting material will enhance the chances of isolating DNA from lower titer sources. Please note that excess volume of reagents will be required to use this protocol. Additional reagents can be purchased separately, call Omega Bio-tek at **1-800-832-8896** for more information.

Materials and Equipment to be Supplied by User:

- Centrifuge with adaptor for 15 mL or 50 mL centrifuge tubes capable of 4,000 x g
- Microcentrifuge capable of at least 13,000 x g
- Nuclease-free 1.5 mL and 2 mL microcentrifuge tubes
- 15 mL or 50 mL centrifuge tubes
- Water baths, heat blocks, or incubators capable of 65°C and 70°C
- Vortexer
- 100% ethanol
- 100% isopropanol
- Ice bucket
- Optional: RNase A (20 mg/mL)

Before Starting:

- Prepare an ice bucket.
- Prepare VHB Buffer and DNA Wash Buffer according to the Preparing Reagent section on Page 5.
- Set a water bath, heat block, or incubator to 70°C.
- Heat Elution Buffer to 65°C.
- 1. Add up to 2 g stool sample to a 15 mL or 50 mL centrifuge tube (not provided) and place the tube on ice.
- 2. Add 10 volumes SLX-Mlus Buffer. Vortex at maximum speed for 1 minute or until the stool sample is completely homogenized.

Note: For example, add 10 mL SLX-Mlus Buffer to 1 g stool sample.

3. Add 1/10 volume DS Buffer and 20 μL Proteinase K Solution. Mix by inverting 10 times.

Note: For example, if 10 mL SLX-Mlus Buffer was used, add 1 mL DS Buffer.

- 4. Incubate at 70°C for 10 minutes.
- 5. Centrifuge at 4,000 x g for 15 minutes.
- 6. Transfer the supernatant to a new 15 mL or 50 mL centrifuge tube.

Note: To make pipetting easier for viscous stool samples, cut the end of the pipet tips.

- 7. Add 1/3 volume SP2 Buffer. Vortex at maximum speed for 10 seconds.
- 8. Let sit on ice for 5 minutes.
- 9. Centrifuge at 4,000 x g for 10 minutes.
- 10. Transfer the cleared supernatant to a new 15 or 50 mL centrifuge tube.
- 11. Add 1 volume 100% isopropanol. Invert the tube 10 times to mix.
- 12. Centrifuge at 4,000 x g for 10 minutes.
- 13. Discard the supernatant and invert the tube on absorbent paper to drain the liquid drops.
- 14. Add 250 μL Elution Buffer. Vortex at maximum speed for 20 seconds.
- 15. Incubate at 70°C for 10-20 minutes. Vortex the sample twice during incubation.

E.Z.N.A.[®] Stool DNA Kit Large Volume Protocol

Optional: If RNA-free DNA is required, add 10 μ L RNase A (not provided). Vortex to mix thoroughly.

16. Add 200 µL cHTR Reagent. Vortex at maximum speed for 10 seconds.

Note: cHTR Reagent must be thoroughly resuspended before use. Cut the end of a 1 mL tip to make it easier to pipet the cHTR Reagent.

- 17. Let sit at room temperature for 2 minutes.
- 18. Centrifuge at maximum speed for 2 minutes.
- 19. Transfer 250 µL supernatant into a new 1.5 mL microcentrifuge tube (not provided).
- 20. Add 10 μL Proteinase K Solution. Vortex to mix thoroughly.
- 21. Add 250 µL BL Buffer. Vortex at maximum speed for 10 seconds.
- 22. Incubate at 70°C for 5 minutes. Vortex the sample twice during incubation.
- 23. Centrifuge briefly to remove any liquid drops from the tube lid.
- 24. Add 250 µL 100% ethanol. Vortex at maximum speed for 10 seconds.
- 25. Centrifuge briefly to remove any liquid drops from the tube lid.
- 26. Insert a HiBind® DNA Mini Column into a 2 mL Collection Tube.
- 27. Transfer the entire sample from Step 25, including any precipitates that may have formed, to the HiBind[®] DNA Mini Column.
- 28. Centrifuge at maximum speed (\geq 13,000 x g) for 1 minute.

- 29. Discard the filtrate and collection tube.
- 30. Transfer the HiBind[®] DNA Mini Column to a new 2 mL Collection Tube.
- 31. Add 500 µL VHB Buffer.

Note: VHB Buffer must be diluted with 100% ethanol before use. Please see the Preparing Reagents section on Page 5 for instructions.

- 32. Centrifuge at maximum speed for 30 seconds.
- 33. Discard the filtrate and reuse collection tube.
- 34. Add 700 μL DNA Wash Buffer.

Note: DNA Wash Buffer must be diluted with 100% ethanol before use. Please see the Preparing Reagents section on Page 5 for instructions.

- 35. Centrifuge at maximum speed for 1 minute.
- 36. Discard the filtrate and reuse collection tube.
- 37. Repeat Steps 34-36 for a second DNA Wash Buffer wash step.
- 38. Centrifuge the empty HiBind[®] DNA Mini Column at maximum speed for 2 minutes at room temperature.

Note: It is important to dry the column membrane before elution. Residual ethanol may interfere with downstream applications.

- 39. Transfer the column into a new 1.5 mL microcentrifuge tube.
- 40. Add 200 µL Elution Buffer heated to 65°C directly to the center of the HiBind® matrix.
- 41. Let sit at room temperature for 2 minutes.
- 42. Centrifuge at maximum speed for 1 minute.
- 43. Store DNA at -20°C.

Note: For maximum PCR robustness, it is recommended to add BSA to a final concentration of 0.1 μ g/ μ L to the PCR reaction mixture. Hot-start PCR is also recommended to increase the specificity. Try to use the minimal amount of elute possible for downstream applications.

Please use this guide to troubleshoot any problems that may arise. For further assistance, please contact the technical support staff, toll free, **at 1-800-832-8896.**

Problem	Cause	Solution
A ₂₆₀ /A ₂₃₀ ratio is low	Inefficient elimination of inhibitory compounds	Repeat with a new sample, be sure to thoroughly mix the sample with cHTR Reagent
	Ethanol not added to the lysate before loading the column	Repeat the DNA isolation with a new sample
	No ethanol added to DNA Wash Buffer	Dilute DNA Wash Buffer with 100% ethanol prior to use (Page 5)
Problem	Cause	Solution
A ₂₆₀ /A ₂₈₀ ratio is high	RNA contamination	Treat the sample with RNase A according to the protocol
Problem	Cause	Solution
Low DNA yield or no DNA eluted	Sample stored incorrectly	Sample should be store at 4°C or -20°C
	Poor homogenization of sample	Repeat with a new sample, be sure to mix the sample with SLX-Mlus Buffer thoroughly
	DNA washed off	Dilute DNA Wash Buffer with 100% ethanol prior to use (Page 5)
	Column matrix loses binding capacity during storage	Add 100 μ L 3M NaOH to the column prior to loading the sample. Centrifuge at 10,000 x g for 30 seconds. Add 100 μ L water to the columns and centrifuge at 10,000 x g for 30 seconds. Discard the filtrate.

Troubleshooting Guide

Problem	Cause	Solution
Problems in downstream applications	BSA not added to PCR mixture	Add BSA to a final concentration of 0.1 μ g/mL to the PCR mixture
	Too much DNA inhibits PCR reactions	Dilute the eluted DNA before use if possible
	Non-specific bands in downstream PCR	Use hot-start Taq polymerase mixture
	Inhibitory substance in the eluted DNA	Check the A ₂₆₀ /A ₂₃₀ ratio. Dilute the elute 1:50 if necessary
	Ethanol residue in elute	Completely dry column before elution
Problem	Cause	Solution
Little or no supernatant after initial centrifuge step	Insufficient centrifugal force	Check the centrifugal force and increase the centrifugal time if necessary
Problem	Cause	Solution
Sample can not pass through the column	Clogged column	Check the centrifugal force and increase the time of centrifugation

The following components are available for purchase separately. (Call Toll Free at 1-800-832-8896)

Product	Part Number
HiBind [®] DNA Mini Columns, 200 columns	DNACOL-02
SP2 Buffer, 60 mL	PD073
DNA Wash Buffer, 40 mL	PDR044
Elution Buffer, 100 mL	PDR048
cHTR Reagent, 50 mL	CHTR-50
Proteinase K Solution, 10 mL	AC116
RNase A, 400 μL	AC117
Glass Beads X, 45g	AC129

HiBind[®], E.Z.N.A.[®], and MicroElute[®] are registered trademarks of Omega Bio-tek, Inc. Qiagen[®], QIAvac[®] and Vacman[®] are all trademarks of their respective companies. PCR is a patented process of Hoffman-La Roche. Use of the PCR process requires a license. Notes:

Notes:

For more purification solutions, visit www.omegabiotek.com

NGS Clean Up

Tissue

FFPE

Fecal Matter

innovations in nucleic acid isolation

(T)

() Omega Bio-tek, Inc. 400 Pinnacle Way, Suite 450 Norcross, GA 30071

770-931-8400

770-931-0230

info@omegabiotek.com

(in) omega-bio-tek

(**b**) omegabiotek

(f) omegabiotek

(
www.omegabiotek.com