

Dry and safe

Drying agents from EMD Millipore.

EMD Millipore is a division of Merck KGaA, Darmstadt, Germany

EMD Millipore drying agents help protect your valuable goods! Products and goods must often be protected against moisture and mould formation, both on long transport routes as well as during their storage. EMD Millipore offers a comprehensive selection of different drying agents for this purpose and many other applications in laboratories.

Drying agents

Contents

Page

Safety and reliability	4
• Drying methods	6
Calculations	8
• Definitions	9
Drying agents for solvents	
with low water absorption capacity	10
Drying agents for solvents	
with medium to unlimited water adsorption capacity	12
• Ordering information	16

Advantages

- Reliable: EMD Millipore drying agents help to minimize the effects of moisture on products. This maintains the original condition and prevents follow-up costs caused by any damage.
- Convenient: EMD Millipore drying agents are user-friendly and easy to handle. This prevents time being wasted.
- Economical: Protection using EMD Millipore drying agents increases the longevity of your products. This helps to reduce costs.

www.vwr.com/emdmillipore

Safety and reliability

Safety and environment

In the drying agents product group, too, EMD Millipore offers products which support the goal of sustainable environmental protection and safety. For example, silica gels with or without orange or brown gel indicators are offered as an alternative to silica gel with blue gel indicator, which is presumably carcinogenic.

Safety information

When using drying agents, one must be aware of the potential dangers involved. Both acid and basic drying agents can be corrosive and magnesium perchlorate can explode, as can sodium and potassium on contact with certain organic substances resp. with water or chlorinated hydrocarbons. In the case of drying agents that develop hydrogen during the drying process, drying must be carried out in a well-ventilated fume chamber. Blue gel, due to the presence of cobalt chloride, can have a carcinogenic effect (R-phase 49 – may cause cancer by inhalation). Filling and emptying should thus always be carried out in a fume chamber.

Drying rate

The intensity only indicates the theoretically achievable residual value for water; it may take a long time for equilibrium to be reached. Thus, if a high degree of efficiency is to be achieved, rapid water uptake is important.

The uptake rate is determined by the following steps:

- The H₂O molecules must be able to leave the material to be dried and must traverse a path to the drying agent.
- The molecules must be able to diffuse into the reactive centers of the drying agent.

Whilst the user can influence the first two points with his experimental setup, the manufacturer of the drying agent must take the following parameters into account if the third point is to be optimized:

- Particle size,
- Pore size and pore distribution,
- Prevention of deactivation of the surface during the drying process.

The ideal drying agents are those where the above parameters do not significantly change during the water adsorption process, e.g. SICAPENT®, magnesium perchlorate, molecular sieves, silica gel, aluminium oxide and calcium hydride. However, many drying agents tend to clump during the water absorption process, disintegrate or form a syrupy layer over unused product. This is a disadvantage when working with gases in drying towers; they tend to become blocked or channels are formed through which the gas flows but in an incompletely dried state.

Capacity

The capacity of a drying agent is defined by the mass of water adsorbed per 100 g anhydrous substance. Example: 1 kg drying agent of capacity 20 % can adsorb 200 g of water. The residual water content of heavily loaded drying agent is higher than that of less loaded agent. On the other hand, drying agents are more heavily loaded by gases or liquids with higher water content. Exception: drying agents such as $CuSO_4$ which form defined hydrates maintain a constant water vapor partial pressure until the next hydrate stage is formed, independent of the mass of water adsorbed.

Regeneration

Some drying agents can be regenerated. To do this, the drying agent is heated to restore its equilibrium. Due to the fact that water is absorbed rapidly, regenerated drying agents must be filled and stored well away from moisture.

Applications

The user-friendly drying agents from EMD Millipore are suitable for a wide range of laboratory applications, for example for drying gases, liquids and solids. With such a wide variety of grain and packaging sizes, you are sure to find the suitable drying agent, either for the classic method of static or dynamic drying processes.

Products with no tendency towards clumping are particularly suited for the dynamic drying process including, for example, calcium hydride, magnesium perchlorate, aluminium oxide, silica gel, or molecular sieves.

Safety and environment – characteristics

▶ For easy detection, safety and/or sustainable characteristics of our products are highlighted with this symbol.

Drying methods

Drying methods

Non-sensitive solids can be dried at higher temperatures in a drying cabinet. However, drying at room temperature in a desiccator or at higher temperatures using a drying pistol is more gentle. Application of a vacuum facilitates the diffusion of the water molecules from the solid to the drying agent; the drying rate is hence somewhat faster.

Static drying

In the classical drying of liquids, the drying agent is added, the whole allowed to stand, stirred (e.g. with a magnetic stirrer), shaken or boiled under reflux (details can be found in relevant textbooks of organic chemistry). It is important that the liquid is moved in such a way that it comes into contact with the drying agent. The liquid is then filtered or decanted. Should compounds be formed due to reaction with the water, these must be subsequently removed by distillation.

The frequently used drying agents calcium chloride, potassium carbonate, sodium sulfate and calcium sulfate have a medium drying effect only on solvents when used statically. Drying agents such as sodium or the earthalkaline oxides, however, are not as efficient as often thought due to their reactive surfaces being relatively small and in addition covered by a coating that hinders access of water molecules. In addition, as laboratory accidents are relatively frequent with these materials, they should not be used for this purpose.

Dynamic drying

In order to increase the drying rate and to achieve better utilization of the drying agent, liquids and gases can be passed through drying towers or drying tubes filled with a drying agent. However, if diffusion and flow rate are not to be hindered, the drying agents used should not be susceptible to clumping or deliquescence. For this reason, drying agents such as calcium hydride, magnesium perchlorate, aluminium oxide, silica gel and molecular sieves are particularly suitable. Untreated phosphorus pentoxide tends to clump when in contact with water and is thus normally unsuitable for dynamic drying. SICAPENT®, however, is a drying agent where P_2O_5 has been coupled to an inert carrier; it remains flowable also when loaded 100 % and allows gases to flow through without resistance.

The drying process can be optimized by using a drying agent of small particle size. In this way, the surface area can be significantly increased and hence the column length and packing decreased. However, it should be taken into account that the flow rate is reduced due to the greater flow resistance in the column. The diagram shows a drying process for gases using silica gel in a drying column: An orange gel turns colorless when loaded with water. The moist gas enters the column at the left hand side with water content C_{4} and leaves it on the right in a dry condition C_{E} ; however, at this point, the gas contains more than the minimum residual water achievable with the drying agent in question. The drying agent in the left hand part of the column is already loaded to the maximum with water and is in equilibrium with the moist gas entering. The actual drying process - the transfer of water from gas to silica gel takes place in the segment known as the "Mass Transfer Zone – MTZ". Over the drying period, the MTZ migrates towards the right hand side of the column (steps 2, 3, 4) until it reaches the end and the moist gas leaves. In order to avoid the gas leaving, the gas flow is interrupted well in time; this has the effect that a small part of the column remains unutilized. However, such dynamic drying procedures are mostly better than static ones. (This is shown in the general calculation on the next page.)

Drying process for gases using silica gel in a drying column.

Calculations

General calculation of relative humidity of the atmosphere: The absorptivity of the atmosphere for humidity increases with the temperature until saturation. 1 m³ air at 11°C is saturated with 10.0 g water, at 20°C with 17.3 g, at 30°C with 30.4 g and at 40°C with 51.2 g.

Calculation of the amount of drying agent required: 1000 | gas containing 10 mg/l water are to be dried at 25°C to a residual water content of 1 mg H_2O/l . 1000 | x 10 mg $H_2O/l - 1000$ | x 1 mg $H_2O/l = 9$ g H_2O are to be adsorbed.

Calculation of the required amount of drying agent for static drying: At the end of the drying process, the residual water content of the gas is in equilibrium with the drying agent. The loading of the silica gel necessary to achieve the desired residual water content can be taken from the table in the ordering information of silica gel, page 272: 1 mg H₂O/I residual water \cong loading of 5.2 g H₂O / 100 g silica gel. To absorb 9 g H₂O, 9/5.2 x 100 g = about 200 g silica gel are required.

Calculation of the required amount of drying agent for dynamic drying: In this case, the greater part of the drying agent is in equilibrium with the water content of 10 mg/l of the gas flowing into the column. Thus, a higher loading – about 20 g H_20 / 100 g silica gel – is possible than in the case of static drying where the entire drying agent is in equilibrium with the low residual water content. Even if in the case of dynamic drying half of the drying agent remains unutilized, 100 g are sufficient compared with 200 g for static drying.

As the flowing gas has much less contact with the drying agent than with the static method, the much lower values for residual water content as cited in the literature for static drying are not quite achieved. If such low residual water content is to be achieved, it is necessary to connect a further column with a more effective drying agent. If the gas is circulated over a drying column in a closed room, even if dynamic, only the capacity of a static method can of course be achieved.

Calculationof the column diameter: Based on the flow rate and the given volume flow (volume/time unit), the smallest
allowable column cross-section can be calculated.
Example: 3.6 l of 2-propanol per hour are to be dried (= 3600 ml / 60 min).
At a flow rate of 10 cm/min* the minimum cross-sectional area is 6 cm² corresponding to approx. 30 mm diameter.

Definitions

Column dimensions

In order to be able to utilize the drying agent to the full, the Mass Transfer Zone [MTZ] and the length of non-utilized column must be kept to a minimum.

Narrow columns have proved to be of advantage in this case:

- For gases, a ratio for length to diameter of greater than 5 is recommended. Columns filled with beads or granular silica gel should be at least 1 m long.
- For liquids, columns of 60 cm in length and 2 3 cm in diameter to 2 m and 6 cm respectively are recommended (for further details, see »drying of solvents«).

To determine the necessary column volume, the required amount of drying agent should be divided by the bulk density. Example: 100 g silica gel of bulk density of 70 g / 100 ml have a volume of 143 ml.

- Flow rate However, the ratio length to cross-section should not be so large that high flow rates result as this would lengthen the MTZ considerably. Recommended flow rates (bases on the free cross-section of the column) for gases: 5 15 m per minute, for liquids: 2.5 30 cm per minute. These values have been established experimentally as being optimal.
- **Drying gases** Gases should be dried using the dynamic method (see »drying methods«). Very moist gases should first be dried using a drying agent of high capacity: CaH₂, CaSO₄, Mg(ClO₄)₂, molecular sieve, H₂SO₄, or silica gel. Fine drying can then be attained using phosphorus pentoxide, SICAPENT®, CaH₂, Mg(ClO₄)₂ or molecular sieve. Further details are contained in the section describing the relevant drying agents.

Drying agents

for solvents with low water absorption capacity

Solvents with a low water-absorbing capacity can generally be dried using static methods; they should be allowed to stand in their reservoirs for up to several days with occasional shaking in contact with a suitable drying agent (e.g. 100 – 200 g molecular sieve (MS) per liter solvent).

The residual water content that can be attained with molecular sieves (MS) is less than 10^{-4} percent by weight corresponding to 1 ppm = 1 mg H₂O = approx. 0.05 mmol H₂O per liter solvent. 250 g molecular sieve can dry more than 10 l hydrophobic solvent whilst becoming 14 – 18 % loaded with H₂O. Of course, dynamic drying as described in textbooks can also be used.

When drying hydrophobic solvents dynamically with aluminium oxide, silica gel or molecular sieve, the flow rate should be up to 30 cm per minute. In this way, using a column of diameter 2.5 cm and 5 cm² cross-section, up to 6 l per hour can pass through. Columns of diameter 2.5 cm and a length of 60 cm containing some 200 g of molecular sieve have proven useful for such applications.

	Solvents	CaCl ₂ – Calcium chloride	CaH ₂ – Calcium hydride	CaO – Calcium oxide	Distillation	 K₂CO₃ – Potassium carbonate 	KOH – Potassium hydroxide	LiAlH $_4$ – Lithium aluminium hydride	Molecular sieve 0.4 nm	Molecular sieve 0.5 nm	Na – Sodium	Na ₂ SO ₄ – Sodium sulfate	P ₂ O ₅ – Phosphorus pentoxide
^	n Amy alcohol					•			•	•			
										•			
			•		•		•			•	•		
D	Anisole	•	•		•					•	•		
D	Benzelle	•	•		•					•	•		
	Benzelanzana	-			•					•			
	Bromoterizene	•			•					•			
	bromotorm taxt. Butul mothul other	•						-		•			•
c	Corbon disulfide		•					•		•	•		
C													•
	Chlorbenzone	•			•				•				•
	Chloroform				Ť					•			
	Cyclohevane												
		-					Ť	•		•	•		
D	n-Decane							•					
5	1.2-Dichlorobenzene	•			•					•			
	Dichloromethane	•							•				
	Dichloroethane	•			•					•			
	Diethyl ether	•	•					•	•		•		
	Diethyl ketone					•			•				
	Diethylene glycol dibutyl ether	•	•						•		•		
	Diisoamyl ether		•					•	•		•		
	Diisopropyl ether	•	•						•		•		
	Dipropyl ether		•					•	•		•		
Е	Ethyl methyl ketone					٠			•				
н	n-Heptane		•					•	•		•		
	n-Hexane		•					•	•		•		
1	Isoamyl alcohol			٠		•				•			
	Isobutyl methyl ketone	•				•				•			
	Isooctane		•					•		•	•		
Ν	Nitrobenzene	•			•					•			•
	Nitropropane	•			•					•			•
Ρ	n-Pentane		•					•	•		•		
	Petroleum ether, petroleum, petroleum benzene	•					•	•		•			
т	Tetrachloroethylene				•	٠				•		•	
	Toluene	•	•		•				•		•		
	1,1,1-Trichlorethane	•			•					•			
	Trichloroethylene				•	٠				•		•	
	1,1,2-Trichlorotrifluoroethane		•						•				
Х	Xylene	•	•		•				•		•		

Drying agents

for solvents with medium to unlimited water adsorption capacity

 $H_2O + drying agent \rightleftharpoons H_2O / drying agent / compound (1)$ $H_2O + solvent \rightleftharpoons H_2O solvated (2)$ Solvent + drying agent \rightleftharpoons Solvent / drying agent / compound (3)

Due to the competitive reactions (2) and (3), the attainable residual water contents are some 1000 times higher than in air – unless drying agents such as calcium hydride are used where no equilibrium exists due to one of the products (in this case H_2) leaving the equation.

In general, residual water values of 10^{-3} % by weight are adequate. Further drying is no longer meaningful, in particular if the dried solvent is refilled under air: even if poured quickly, the H₂O content increases from $1 \cdot 10^{-3}$ to $2 - 4 \cdot 10^{-3}$ %. A further source of contamination with water is e.g. non-greased ground glass, e.g. in desiccators, through which significant amounts of water vapor can diffuse. Suitable drying agents are recommended in the listing below. As conventional drying with chemical agents is adequately described in textbooks of preparative organic chemistry, only dynamic drying with the help of water-miscible solvents and molecular sieves (MS) is described here.

The following values can be attained using this method:Residual water content: 0.001 - 0.005 % weight H₂O in the solventCapacity: at a desired residual water content of max. 0.001 %, the molecular sieve used may notbe loaded greater than:Diethyl ether14 g H₂O / 100 g molecular sieveEthyl acetate6 g H₂O / 100 g molecular sieveDioxane4 g H₂O / 100 g molecular sievePyridine2 g H₂O / 100 g molecular sieve

Loading: depends on the reaction equation (2) of solvents

	Solvents A-M	Water adsorption [g H ₂ 0/100 g solvent]	Drying agent	Ca – Calcium	CaCl ₂ – Calcium chloride	CaH ₂ – Calcium hydride	CaO – Calcium oxide	CuSO ₄ – Calcium sulfate	Distillation	K ₂ CO ₃ – Potassium carbonate	KOH – Potassium hydroxide	Mg – Magnesium	MgO – Magnesium oxide	MgSO ₄ – Magnesium sulfate	Molecular sieve 0.3 nm	Molecular sieve 0.4 nm	Molecular sieve 0.5 nm	Na – Sodium	Na_2SO_4 – Sodium sulfate	P ₂ O ₅ – Phosphorus pentoxide
Α	Acetic acid	∞						٠												
	Acetone	∞								•					٠					
	Acetonitrile	~			•					•					•					•
	Acetylacetone	∞								•						•				
	tert-Amyl alcohol	14					٠										٠			
В	1-Butanol	20							٠	•						•				
	2-Butanol	44							•	•							٠			
	tert-Butanol	∞					•										•			
	n-Butyl acetate	2.9												•		•				
С	Cyclohexanol	11					•										•			
	Cyclohexanone	8.7								•							٠			
D	Diethylene glycol	∞							•							•			•	
	Diethylene glycol diethyl ether	∞			٠	•											٠	•		
	Diethylene glycol dimethyl ether	∞			•	•											•	•		
	Diethylene glycol monobutyl ether	∞			•	•											•	•		
	Diethylene glycol monoethyl ether	∞			•	•											•	•		
	Diethylene glycol monomethyl ether	∞			•	•											•	•		
	N,N-Diethylformamide	∞				•			•								•			
	N,N-Dimethylformamide	∞				•			•							•				
	Dimethyl sulfoxide	∞				•			•						•					
	1,4-Dioxane	∞			•	•										•		•		
E	Ethanol	∞					•					•	•		•					
	Ethanolamine	∞									•				•					
	(2-Ethoxyethyl)-acetate	6.5								•						•			•	•
	Ethyl acetate	9.8								•						•			•	•
	Ethylene glycol dimethyl ether	∞				•			•							•				
	Ethylene glycol	∞							•							•			•	
	Ethylene glycol monobutyl ether	∞							•											
	Ethylene glycol monoethyl ether	∞							•											
	Ethylene giycol monomethyl ether	∞							•							_				
-	Etnyi formlate	∞					-							•		•			•	
r C	Change	∞					•								•				•	
U U	uiyeeroi	~~							•											
п 1	I, I, I, I, J, J, J, J = NCXATIUOTO-Z-PROPANOI	15																		
1	Methanol	15																		
IVI	Methyl acetate	8																		
	Methyl formiate	0																		
	Methyl pronyl ketone	3.6																		
	Methyl pyridine	∞									•					•				

	Solvents N-Z	Water adsorption [g H ₂ 0/100 g solvent]	Drying agent	Ca – Calcium	CaCl ₂ – Calcium chloride	CaH ₂ – Calcium hydride	CaO – Calcium oxide	CuSO ₄ – Calcium sulfate	Distillation	K ₂ CO ₃ – Potassium carbonate	KOH – Potassium hydroxide	Mg – Magnesium	MgO – Magnesium oxide	MgSO ₄ – Magnesium sulfate	Molecular sieve 0.3 nm	Molecular sieve 0.4 nm	Molecular sieve 0.5 nm	Na – Sodium	Na ₂ SO ₄ – Sodium sulfate	P ₂ O ₅ – Phosphorus pentoxide
Р	1,2-Propanediol	∞					•					•	•			•				
	1,3-Propanediol	∞					•					•	٠			•				
	1-Propanol	~					•					•	•			•				
	2-Propanol	~					•					•			٠					
	Pyridine	~					٠					•	٠		•					
Т	Tetraethylene glycol	∞									•					•				
	Tetrahydrofuran	∞				•					•					•				
	Triethanolamine	∞									•						٠			
	Triethylene glycol	∞							٠							•			•	
	Triethylene glycol dimethyl ether	∞							•											

Water absorption rate of some drying agents

Experimental: 100 g SICAPENT® or 75 g of other drying agents were placed in a vacuum desiccator alongside a dish of water. After 1 h the increase in weight of the drying agents were established using gravimetric analysis. The results obtained are shown in the figure.

Examples of flow rate

The flow rate for water-miscible solvents should be less than 10 cm/minute. This corresponds to max. flow rates of:

Flow rate	Column diameters
50 ml/min	25 mm
70 ml/min	30 mm
200 ml/min	50 mm

Solvent	Initial water content [% by weight]	Residual water content [% by weight]	Quantity of solvent dried [I]	Type [nm]
Acetonitrile	0.05 – 0.2	0.003	3 - 4	0.3
Benzene	0.07	0.003	>10	0.4
Chloroform	0.09	0.002	>10	0.4
Cyclohexane	0.009	0.002	>10	0.4
Dichloromethane	0.17	0.002	>10	0.4
Diethyl ether	0.12	0.001	10	0.4
Diisopropyl ether	0.03	0.003	10	0.4
Dimethylformamide	0.06 - 0.3	0.006	4 – 5	0.4
1,4-Dioxane	0.08 - 0.3	0.002	3 – 10	0.5
Ethanol	0.04	0.003	10	0.3
Ethyl acetate	0.015 - 0.2	0.004	8 - 10	0.4
Methanol	0.04	0.005	10	0.3
2-Propanol	0.07	0.006	7	0.3
Pyridine	0.03 - 0.3	0.004	2 – 10	0.4
Carbon tetrachloride	0.01	0.002	>10	0.4
Tetrahydrofuran	0.04 - 0.2	0.002	7 – 10	0.5
Toluene	0.05	0.003	>10	0.4
Xylene	0.045	0.002	>10	0.4

Dynamic drying of solvents with molecular sieves using a column of 25 x 600 mm (250 g molecular sieve) or of 50 x 2,000 mm (2 kg molecular sieve).

Amount of solvent dried

The amount of dry solvent obtainable for solvents that are readily miscible with water cannot be accurately given as this is dependent on the initial water content which is mostly unknown. However, if the solvent is dried statically to a low H_2O content (e.g. with approx. 100 g of molecular sieve, enough for 1 l of solvent), the subsequent dynamic process can be used to dry 10 l of the solvent to 0.001 - 0.002 % weight using 200 g of molecular sieve. For drying the strongly hygroscopic alcohols methanol, ethanol and 2-propanol to 0.002 % weight of residual water, however, some 2 kg of 0.3 nm molecular sieve is necessary. Column dimensions: Ø 50 mm, length 2 m. An overview of the attainable drying effect with a series of water-saturated solvents is given in the table above.

Practical procedure

It should initially be checked whether, in addition to water, the solvent to be dried is adsorbed by the molecular sieve. To do this, place 10 – 20 beads in a test tube along with several ml of the solvent. Significant increase in temperature – in certain circumstances even boiling – indicates co-adsorption according to (3). If this is the case, either a molecular sieve of smaller pore size, where there is no co-adsorption, should be used or the flow rate should be reduced to max. 2.5 cm per minute. The appropriate pore sizes where no further co-adsorption takes place are given in the table.

Initially the solvent should be applied to the column slowly until the entire column has been wetted within 15 – 30 minutes. As a rule, the first fraction collected contains an increased water content; this should either be discarded or re-applied to the column. In the case of fresh molecular sieve, the first fraction may contain some particles and be somewhat turbid; this fraction should either be disposed of or filtered.

Ordering information Drying agents A-C

Calcium chloride [CaCl ₂]		CAS No.	Content	Packaging	VWR Cat. No.			
Calcium chloride anhydrous	powder Reag. Ph Eur	10043-52-4	500 g	Plastic bottle	EM1.02378.0500			
			2.5 kg	Plastic bottle	EM1.02378.2500			
Calcium chloride anhydrous	, granular ~ 1 – 2 mm	10043-52-4	1 kg	Plastic bottle	EM1.02379.1000			
			EM1.02379.5000					
Calcium chloride anhydrous	, granular ~ 2 – 6 mm	10043-52-4	1 kg	Plastic bottle	EM1.02391.1000			
			5 kg	Fibre carton	EM1.02391.5000			
			25 kg	Fibre carton	EM1.02391.9025			
Calcium chloride anhydrous	, granular ~ 6 – 14 mm	10043-52-4	1 kg	Plastic bottle	EM1.02392.1000			
			5 kg	Fibre carton	EM1.02392.5000			
			25 kg	Fibre carton	EM1.02392.9025			
For drying	Acetone, ethers, numerous esters, aliphatic,	olefinic, aromatic and halogenat	ted hydrocart	oons, neutral gases.				
Unsuitable for drying	Alcohols, ammonia, amines, aldehydes, pher	nols, several esters and ketones: t	hese compou	inds are bound				
	by CaCl ₂ .							
Application	Drying of liquids, filling drying tubes; not su	uitable for the drying of fast-flow	ving gases as	pore diffusion is				
	hindered due to deliquescence during water	ruptake.						
Residual water content 0.14 mg H_20/I to 16 % H_20 content 0.7 mg H_20/I to 32 % H_20 content 1.4 mg H_20/I to 65 % H_20								
in air	content							
Capacity	Pacity 98 %							
Regeneration	At 250°C in a drying oven							

Calcium hydride [CaH ₂]		CAS No.	Content	Packaging	VWR Cat. No.
Calcium hydride for synthes	is, ~ 1 – 10 mm	7789-78-8	100 g	Glass bottle	EM8.02100.0100
			500 g	Glass bottle	EM8.02100.0500
For drying	Gases, organic solvents, including ketones a	ind esters.			
Unsuitable for drying	Compounds with active hydrogen, ammonia	a, alcohols.			
NB	Can explode in reaction with water!				
Application	As calcium hydride is a very effective drying	g agent and reacts vigorously wit	h water, the	substances to be	
	dried should contain only low amounts of v	vater. In reaction with water, hyd	rogen is relea	ised (always work i	n
	a fume hood!) according to the equation Ca	$H_2 + H_2 0 ->2 H_2 + Ca0.$			
	The fine voluminous powder formed may bl	ock drying towers. CaH ₂ is superio	or to sodium	as a drying agent a	as
	it possesses a much larger surface area. The	e CaO formed does not adhere to	the CaH_2 sur	face and itself acts	as
	a drying agent. CaO + $H_2O \rightarrow Ca(OH)_2$.				
Disadvantage	Due to the higher activity and reactivity the	an Na, CaH $_2$ is less stable if stored	l incorrectly.	Hence, once the	
	package has been opened, it should be stor	ed in a desiccator.			
Residual water content	<0.00001 mg H ₂ 0/I				
in air					
Capacity	Stoichiometric				

Calcium oxide [CaO]		CAS No.	Content	Packaging	VWR Cat. No
Calcium oxide from marble	small lumps ~ 3 – 20 mm	1305-78-8	1 kg	Plastic bottle	EM1.02109.1000
			25 kg	Fibre carton	EM1.02109.9025
For drying	Neutral and basic gases, amines, alcohols, ethers.				
Unsuitable for drying	Acids, acid derivatives, aldehydes, ketones, esters.				
Residual water content	0.003 mg H ₂ 0/I				
in air					
Capacity	Limited as the surface is coated with a less perme	eable layer, especially in the	e presence of	CO ₂ .	

Copper sulfate [CuSO₄]		CAS No.	Content	Packaging	VWR Cat. No.
Copper(II) sulfate anhydrous	s for analysis EMSURE®	7758-98-7	250 g	Plastic bottle	EM1.02791.0250
			1 kg	Plastic bottle	EM1.02791.1000
For drying	Low fatty acids, alcohols, esters.				
Unsuitable for drying	Amines, nitriles, ammonia.				
Residual water content	1.4 mg H ₂ 0/I				
in air					
Regeneration	Above 50°C under vacuum.				
Advantage	Can be used as indicator: Colorless anhydro	us copper(II)sulfate becomes bl	ue as copper(II)sulfate 5-hydrate.	

Ordering information Drying agents D-M

Desiccant sachets [SiO ₂]		CAS No.	Content	Packaging	VWR Cat. No.			
Desiccant sachet 10 g silica	gel with humidity indicator (orange gel)	-	50 units	Metal can	EM1.03804.0001			
sachet: 7 x 9 cm								
Desiccant sachet 100 g silic	a gel with humidity indicator (orange gel)	-	10 units	Metal can	EM1.03805.0001			
sachet: 15 x 14 cm								
Desiccant sachet 250 g silic	a gel with humidity indicator (orange gel)	-	10 units	Metal can	EM1.03806.0001			
sachet: 15 x 20.5 cm								
Desiccant sachet 3 g silica g	el with humidity indicator (orange gel)	-	100 units	Metal can	EM1.03803.0001			
sachet: 4 x 7 cm			1000 units	Fibre carton	EM1.03803.0002			
Further desiccant sachets,	e.g. 500 g, on request.							
For drying	Humidity							
Application	Sachets filled with silica gel protect valuable and se	ensitive products from the	e effects of m	oisture. Packed				
	along with sensitive machine components and tools	s, they prevent corrosion o	during storage	e and transport.				
	Sachets maintain the function of sensitive optical,	electrical and electronic c	omponents a	nd instruments.				
Capacity	Silica gel has a high adsorptive capacity for moistu	re: 20 % of its own weigh	it at 25°C and	d 80 % relative				
	humidity.							
Indicator change	ndicator change At approx. 7 – 10 g adsorbed $H_2O / 100$ g silica gel, the color change is from orange to colorless.							
n orange gel								
Regeneration	Silica gel (orange gel) can be regenerated in a dryir	ng oven at 130 – 140°C. D	esiccant sach	net only up to				
	80°C, because the adhesive of the bag can melt.							

Lithium aluminium hydride	[Li(AIH₄)]	CAS No.	Content	Packaging	VWR Cat. No.
Lithium aluminium hydride	– powder, for synthesis	16853-85-3	25 g	Metal can	EM8.18875.0025
Lithium aluminium hydride	– tablets, for synthesis	16853-85-3	25 g	Metal can	EM8.18877.0025
For drying	Hydrocarbons, ethers.				
Unsuitable for drying	Acids, acid derivatives (chlorides, anhydrides, am	des, nitriles), aromatic nitro	compounds.		
Application	$Li(AIH_4)$ reacts vigorously, on occasion explosively	r, with water whilst releasin	g hydrogen.		
	Hence, the solvents to be dried should have a ver	y low initial water content.			
Capacity	Stoichiometric				

Magnesium [Mg]		CAS No.	Content	Packaging	VWR Cat. No.
Magnesium, turnings acc. to Grignard for synthesis		7439-95-4	250 g	Metal can	EM8.05817.0250
			1 kg	Metal can	EM8.05817.1000
Magnesium powder particle	size about 0.06 – 0.3 mm	7439-95-4	1 kg	Metal can	EM1.05815.1000
For drying	Alcohols				
Application	Magnesium turnings must be activated with ion	dine prior to use. During the o	Irying proces	s insoluble metal	
	hydroxide is initially produced, followed by metal alcoholate, which is soluble in alcohol. Thus after drying,				
	distillation is necessary.				
Capacity	Stoichiometric				

Magnesium oxide [MgO]		CAS No.	Content	Packaging	VWR Cat. No.
Magnesium oxide for analysis		1309-48-4	100 g	Plastic bottle	EM1.05865.0100
			500 g	Plastic bottle	EM1.05865.0500
For drying	Alcohols, hydrocarbons, basic liquids.				
Unsuitable for drying	Acid compounds.				
Residual water content	0.008 mg H ₂ 0/I				
in air					
Regeneration	At 800°C				

Magnesium perchlorate [Mg	J(CIO₄)₂]	CAS No.	Content	Packaging	VWR Cat. No.
Magnesium perchlorate hyd	rate [about 83 % Mg(ClO₄)₂], desiccant,	64010-42-0	500 g	Metal can	EM1.05873.0500
about 1 – 4 mm					
For drying	Inert gases, air; adsorbs ammonia as strongly as water.				
Unsuitable for drying	Numerous solvents in which it is soluble, e.g. acet	tone, dimethyl formamide, o	dimethyl sulfo	oxide, ethanol,	
	methanol, pyridine, organic compounds.				
Application	In drying towers for the drying of rapid flowing gases; with increasing H_2O loading the packing becomes				
	looser. Mg(ClO ₄) ₂ can be removed easily as it does	not stick to the walls.			
Residual water content	0.0005 mg H_20/I to 10 % H_20 content \mid 0.002 mg	H_20/I to 32 % H_20 content			
in air					
Capacity	48 %, corresponding to 6 moles crystal water.				
Safety information	Explosion risk when in contact with a reducing at	mosphere, in particular in t	the presence	of acids	
	or compounds that can be hydrolyzed to form acids. Mg(ClO ₄) $_2$ may only be heated in vessels made of				
	inorganic materials.				
Regeneration	At 240°C under vacuum.				

Magnesium sulfate [MgSO ₄		CAS No.	Content	Packaging	VWR Cat. No.	
Magnesium sulfate anhydrous for analysis EMSURE®		7487-88-9	1 kg	Glass bottle	EM1.06067.1000	
			25 kg	Plastic drum	EM1.06067.9025	
For drying	Almost all compounds including acids, acid deriv	Almost all compounds including acids, acid derivatives, aldehydes, esters, nitriles and ketones.				
Residual water content	1.0 mg H ₂ 0/I					
in air						
Regeneration	At 200°C in a drying oven.					

Ordering information Drying agents M

Molecular sieves	CAS No.	Content	Packaging	VWR Cat. No.	
Molecular sieve 0.3 nm beads ~ 2 mm ¹⁾	1318-02-1	250 g	Plastic bottle	EM1.05704.0250	
		1 kg	Plastic bottle	EM1.05704.1000	
		10 kg	Bucket, plastic	EM1.05704.9010	
Molecular sieve 0.3 nm beads, with moisture indicator ~ 2 mm ¹⁾	-	250 g	Plastic bottle	EM1.05734.0250	
		1 kg	Plastic bottle	EM1.05734.1000	
Molecular sieve 0.3 nm rods ~ 1.6 mm (1/16")	1318-02-1	250 g	Plastic bottle	EM1.05741.0250	
		1 kg	Plastic bottle	EM1.05741.1000	
Molecular sieve 0.4 nm beads ~ 2 mm Reag. Ph Eur	1318-02-1	250 g	Glass bottle	EM1.05708.0250	
		1 kg	Glass bottle	EM1.05708.1000	
		10 kg	Bucket, plastic	EM1.05708.9010	
Molecular sieve 0.4 nm beads, with moisture indicator \sim 2 mm	-	250 g	Glass bottle	EM1.05739.0250	
		1 kg	Glass bottle	EM1.05739.1000	
Molecular sieve 0.4 nm rods ~ 1.6 mm (1/16")	1318-02-1	1 kg	Plastic bottle	EM1.05743.1000	
Molecular sieve 0.5 nm beads ~ 2 mm	1318-02-1	250 g	Glass bottle	EM1.05705.0250	
		1 kg	Glass bottle	EM1.05705.1000	
Molecular sieve 1.0 nm beads ~ 2 mm	1318-02-1	1 kg	Glass bottle	EM1.05703.1000	
\sim 1) Molecular signer with 0.3 nm head form (105704) and with indicator brown get (105724) are suitable for use in					

1) Molecular sieves with 0.3 nm bead form (105704) and with indicator brown gel (105734) are suitable for use in Karl Fischer titrators.

Molecular sieves are suitable for drying practically all gases and liquids. They can be used in desiccators, drying tubes, for keeping absolute solvents dry, filling columns for drying gases or solvents and for selective adsorption. (e.g. phosgene from chloroform).

Advantages

- Easy-to-use: Practically chemically inert, non-toxic, no disposal problems, dried liquids can be decanted.
- High adsorption capacity even with low water content of the substance to be dried.
- High adsorption capacity even at high temperatures.
- High adsorption affinity for polar and unsaturated organic molecules; however, H₂O is always preferentially adsorbed.
- Selective adsorption: only molecules that can pass through the pores are adsorbed.

Molecular sieves – continue	ed					
Temperature	Molecular sieves absorb	$0 H_20$ whilst essentially matrix	aintaining their capacity at temperatures whe	re both		
	aluminium oxide and si	lica gel begin to release w	ater. Between 0 and 150°C, the capacity decr	eases		
	gradually from 23 to 7	gradually from 23 to 7 % with a residual water content of 10 mg H_2 0/l.				
Residual water content	Min. 0.0001 mg H_2O/I at 25°C. The less loaded a molecular sieve is the more intensively it dries.					
in air	The supplied original pa	icked molecular sieve cont	tains approx. 1 – 2 % water. This tends not to	interfere		
	with the drying process	. However, if the requirem	ents of the drying process are high, the subst	ance		
	must be activated as described under »regeneration«.					
Typical values for	Loading [g H ₂ 0/100 g molecular sieve] Residual water content [mg H ₂ 0/l]					
molecular sieve 0.4 nm	1		0.0001			
	3		0.001			
	6		0.01			
	15		0.1			
0	20		0.5			
Capacity	$15 - 24 \%$ at 25° C. If IC	ow residual water content	is to be attained, the capacity can only be pa	rtially utilized		
	(see table above): At a t	lar sieve	tent of 0.01 mg $H_2O/1$, the loading may not ex	ceea		
Indiantor	The indicator (brown go	la sicve.	vallowich at a H.O. untaka of approximately			
mulcator	7 – 10 g / 100 g molecu	alar sieve.	yenowish at a n ₂ 0 uptake of approximately			
Regeneration	This can be carried out	as often as required; the r	nax. regeneration temperature is 450°C. Mole	cular sieves		
	can be dried in a drying	oven above 250°C to a w	ater content of 2 – 3 g / 100 g. The remaining	g water can be		
	removed at 300 – 350°C using a vacuum oil pump (10-1-10-3 mbar), whereby, as is usual, a cold trap					
	containing carbon dioxi	ide coolant or liquid air sh	ould be connected. Water pumps, due to their	r high partial		
	water vapor pressure, a	re completely unsuitable f	or this purpose. For safety reasons, molecular	sieves		
	that have been used to	dry solvents should be fre	ed from possible solvent by mixing with wate	r prior to		
	regeneration. Molecular					
Chemical and physical	Molecular sieves are cry	ystalline, synthetic zeolite	s. Their crystal gratings are similar to a cage v	vith		
properties	numerous hollow space	s. The cavities are accessib	ble from all sides by pores of exactly defined of	dimensions:		
	depending on the type	of molecular sieve, these o	can be 0.3, 0.4, 0.5 or 1.0 nm in diameter. If, d	lue to		
	heating, the water in th	ie hollow spaces is remove	ed, the material becomes an extremely active	adsorbent.		
	However, only those mo		are small enough to pass through the pores (
	Pore diameter	Туре	Composition	Structure		
	0.3 nm	3A	Potassium sodium aluminium silicate	Zeolite		
	0.4 nm	4A	Sodium aluminium silicate	Zeolite		
	0.5 nm	5A	Sodium and calcium aluminium silicate	Zeolite		
Discriminal anomatica	The melocules cieve on s	I 3A/X	Sodium aluminium silicate			
Physical properties	1 = 2.06 clay as a hindin	a agent Vibration caused	hy transport may bring about some abrasion w	ubich collects in		
	the first fraction during	dynamic drying.	by transport may omly about some abrasion v			
	Bulk density		0.75 kg/l			
	Surface (BET)		800 m²/g			
	Form supplied		Powder, beads (~ 2 mm), rods (~ 1.6 mm, ~ 3	3.2 mm)		
	Effective pore diameter	er depending on type	0.3, 0.4, 0.5 or 1.0 nm			
	Hollow space volume		0.3 cm³/g			
	Specific heat		>0.8 KJ/kg			
	Heat of absorption per	kg adsorbed water	4200 KJ			

Ordering information Drying agents P-S

Phosphorus pentoxide [P205]	CAS No.	Content	Packaging	VWR Cat. No.
di-Phosphorus pentoxide ex	tra pure	1314-56-3	1 kg	Glass bottle	EM1.00540.1000
			25 kg	Plastic drum	EM1.00540.9025
di-Phosphorus pentoxide fo	r analysis ACS, ISO, Reag. Ph Eur	1314-56-3	100 g	Glass bottle	EM1.00570.0100
			500 g	Glass bottle	EM1.00570.0500
For drying	Neutral and acid gases, saturated alipathic	and aromatic hydrocarbons, nitril	es, alkyl and a	aryl halogenides an	d
	carbon disulfide.				
Unsuitable for drying	Alcohols, amines, acids, ketones, ethers, chl	orinated and fluorinated hydroca	rbons.		
Residual water content	0.00002 mg $\rm H_2O/I$ to 25 % water absorption	n with SICAPENT®, corresponding	to 2 mole H ₂ 0	$O per mole P_2O_5$.	
in air					
Capacity	P ₂ O ₅ : 40 % SICAPENT [®] : 33 %				
Application note	On adsorbing water, phosphorus pentoxide	becomes covered with a film of p	olymetaphos	ohoric acid	
	which hinders the diffusion of $\rm H_2O$ molecule	es. This effect can be avoided by u	sing SICAPEN	IT [®] as the	
	polymetaphosphoric acid formed from P_2O_5 and water is immediately adsorbed by the carrier substance.				
	As a result, the drying agent is available as a fine, flowable granulate.				
Regeneration	Not possible				

Potassium carbonate [K ₂ CO ₂]	CAS No.	Content	Packaging	VWR Cat. No.	
Potassium carbonate for an	alysis EMSURE® ACS, ISO, Reag. Ph Eur	584-08-7	500 g	Plastic bottle	EM1.04928.0500	
			1 kg	Plastic bottle	EM1.04928.1000	
Potassium carbonate for analysis EMSURE® ACS, ISO, Reag. Ph Eur 584-08-7		50 kg	Fibre carton	EM1.04928.9050		
For drying	Ammonia, amines, acetone, nitriles, chlorinated	Ammonia, amines, acetone, nitriles, chlorinated hydrocarbons.				
Unsuitable for drying	Acids, substances that tend to react when expo	sed to water-removing basic o	onditions.			
Application	Drying liquids.					
Regeneration	At 160°C; becomes finely powdered from 100°C	2.				

Potassium hydroxide [KOH]		CAS No.	Content	Packaging	VWR Cat. No.	
Potassium hydroxide pellets	for analysis EMSURE®	1310-58-3	500 g	Plastic bottle	EM1.05033.0500	
			1 kg	Plastic bottle	EM1.05033.1000	
			5 kg	Plastic bottle	EM1.05033.5000	
			25 kg	Fibre carton	EM1.05033.9025	
			50 kg	Fibre carton	EM1.05033.9050	
For drying	Basic liquids, e.g. amines and inert and basic gase	Basic liquids, e.g. amines and inert and basic gases.				
Unsuitable for drying	Acids, acid derivatives (chlorides, anhydrides, ami	des, nitriles).				
Application	Drying liquids. Not suitable for drying fast-flowin	g gases as this hinders diffus	sion due to d	eliquescence.		
	Can be used for drying gases if, apart from moisture, acid gas should be adsorbed.					
Residual water content	0.002 mg H ₂ 0/I					
in air						

SICAPENT®	CA	S No.	Content	Packaging	VWR Cat. No.
SICAPENT® with indicator (hosphorus pentoxide drying agent –		500 ml	Glass bottle	EM1.00543.0500
for desiccators) on inert car	rier material		2.8 l	Glass bottle	EM1.00543.2800
Composition	25 % inert inorganic carrier substance and 75 % phos	phorus pentoxide.			
Particle size of carrier	0.1 – 1.6 mm				
Bulk density	approx. 300 g/l				
Flowable up to	100 % water uptake				
Indicator content	0.1 %				
Water content /	H ₂ O content [%] Inc	licator color of drying a	agent		
Indicator color	0 Co	lorless			
	20 Gr	een			
	27 Blu	le-green			
	33 Blu	Je			
Application note	The main advantage of using granulated drying agents	s is the ease of use. Even	after signific	ant water uptake	
	(approx. 100 % of its own weight) the substance rema	ins in particle form. Hen	ce, subseque	nt to the drying pro-	
	cess the drying agent can easily be removed from the	vessel. SICAPENT® dries v	well due to it	s large surface area;	
	it is some 20 % faster than simple phosphorus pentoxi	de. In other terms, 20 %	more water	is adsorbed	
	in the same time.				
Application	Drying liquids, filling drying tubes. Due to its high inte	nsity and granulate form	n, it is particu	larly suitable for	
	drying fast-flowing gases in drying tubes.				
Safety information	On opening the bottle, fine particles of drying agent m	nay spray out; hence whe	en opening th	e bottle adhere to	
	the instructions on the label and open carefully whilst	wearing safety spectacl	es.		

Ordering information Drying agents S

Silica gel [SiO ₂]		CAS No.	Content	Packaging	VWR Cat. No.
Silica gel granules, desiccan	t ~ 0.2 – 1 mm	7631-86-9	1 kg	Plastic bottle	EM1.01905.1000
Silica gel granules, desiccan	t ~ 2 – 5 mm	7631-86-9	1 kg	Plastic bottle	EM1.01907.1000
			5 kg	Plastic drum	EM1.01907.5000
Silica gel with moisture indi	cator (brown gel) desiccant ~ 1 – 4 mm	-	1 kg	Plastic bottle	EM1.01972.1000
			5 kg	Plastic bottle	EM1.01972.5000
			25 kg	Plastic drum	EM1.01972.9025
Silica gel with indicator (ora	ange gel), granulate ~ 1 – 3 mm	-	1 kg	Plastic bottle	EM1.01969.1000
			5 kg	Plastic bottle	EM1.01969.5000
			25 kg	Plastic drum	EM1.01969.9025
Silica gel beads, desiccant ~	2 – 5 mm	7631-86-9	1 kg	Plastic bottle	EM1.07735.1000
For drying	Practically all gases and liquids.				
Unsuitable for drying	Alkaline liquids (bases and amines). Orange gel: s	trong acid and basic gases, o	rganic solver	its.	
Application	In a desiccator, for protecting moisture-sensitive	substances during storage a	nd transport	and for	
	maintaining the dryness of anhydrous solvents, p	acking drying towers for gas	es or solvents	5.	
Application temperature	Up to approx. 65° C the capacity is practically tem	perature-independent. At hi	gher tempera	atures	
	the capacity decreases significantly.				
Advantages of white gel	Practically chemically inert, non-toxic, no disposa	al problems, easy-to-handle.	Dried liquids	can simply	
	be decanted.				
Residual water content	Min. 0.02 mg H_2O/I , corresponding to a dew point	of -55°C. The less loaded sil	ica gel is wit	h water,	
in air	the more intensive it dries and the lower the resid	ual water content.			
	Loading in g H_2O / 100 g	Residual water content r	ng H₂O/I		
	1	0.003			
	1.5	0.1			
	3.2	0.5			
	5.2	1			
	14	5			
	23	10			
	30	13			
Capacity	20 – 27 % at 25°C. If low residual water contents	is to be attained, the capaci	ty may only l	be partly utilized	
	(see table above): if the desired residual water co	ntent of 1 mg/l is to be attain	ned, the load	ing may not exceed	
	5.2 g H_2 0 / 100 g silica gel.				

Silica gel [SiO ₂] – continued				
Indicator change	At approx. 7 – 10 g adsorbed H_20 / 100 g silica gel, the color change is from orange to colorless.			
in orange gel				
Indicator change	At approx. 7 – 10 g adsorbed H_2O / 100 g silica gel, the color change is from brown to yellowish.			
in brown gel				
Regeneration	Regeneration Silica Gel	Temperature / duration in a drying oven		
	White-Gel	Approx. 100 – 180°C / approx. 3 hours		
	Orange-Gel	Approx. 130 – 140°C / approx. 3 hours		
	Brown-Gel	Approx. 120 – 150°C / approx. 3 hours		
	Silica gel is no longer capable of drying	Above 500°C		
Typical chemical and	Analytical data	98 % SiO ₂ , remainder Al ₂ O ₃ , TiO ₂ , Fe ₂ O ₃		
physical data	Indicator in orange gel	Iron salt		
	Indicator in brown gel	Iron salt		
	Bulk density	Approx. 0.7 kg/l		
	Surface (BET)	700 m²/g		
	Particle size	0.2 – 1 mm, 1 – 3 mm, 2 – 5 mm		
	Pore size	2.0 – 2.5 nm		
	Specific heat	Approx. 1 KJ/kg°C		
	Heat of adsorption per kg adsorbed water	3200 KJ		

Ordering information Drying agents S-Z

Sodium [Na]		CAS No.	Content	Packaging	VWR Cat. No.
Sodium rod diameter 2.5 cm (protective liquid: paraffin oil)		7440-23-5	250 g	Glass bottle	EM1.06260.0250
			1 kg	Glass bottle	EM1.06260.1000
Sodium rods (protective liquid: paraffin oil) for synthesis		7440-23-5	250 g	Glass bottle	EM8.22284.0250
			1 kg	Glass bottle	EM8.22284.1000
For drying	Ethers, saturated aliphatic and aromatic hydrocarbons, tertiary amines.				
Unsuitable for drying	Acids, acid derivatives, alcohols, aldehydes, ketones, alkyl and aryl halogenides; these can give rise				
	to extremely vigorous, explosive reactions.				
Application	As sodium wire using a sodium press for drying liquids. Caution! Sodium reacts explosively with water.				
	Sodium waste should be disposed of using a high-boiling alcohol e.g. tert-butanol.				
Capacity	Stoichiometric				
NB	Practically all solvents which can be dried with sodium can also be more intensively dried with				
	calcium hydride.				

Sodium hydroxide [NaOH]		CAS No.	Content	Packaging	VWR Cat. No.
Sodium hydroxide pellets for analysis EMSURE® ISO		1310-73-2	500 g	Plastic bottle	EM1.06498.0500
			1 kg	Plastic bottle	EM1.06498.1000
			5 kg	Plastic bottle	EM1.06498.5000
			25 kg	Fibre carton	EM1.06498.9025
			50 kg	Fibre carton	EM1.06498.9050
For drying	Basic liquids, e.g. amines and inert and basic gases	5.			
Unsuitable for drying	Acids, acid derivatives (chlorides, anhydrides, amid	des, nitriles).			
Application	Drying liquids. Not suitable for drying fast-flowing gases as pore diffusion is hindered by deliquescence.				
	Can be used for drying gases if acid gas also has to	o be adsorbed.			
Residual water content	0.002 mg H ₂ 0/I				
in air					

Sodium sulfate $[Na_2SO_4]$		CAS No.	Content	Packaging	VWR Cat. No.
Sodium sulfate anhydrous granulated for organic trace analysis EMSURE®		7757-82-6	500 g	Glass bottle	EM1.06639.0500
Sodium sulfate anhydrous, coarse granules for analysis 0.63 - 2.0 mm		7757-82-6	500 g	Plastic bottle	EM1.06637.0500
EMSURE® ACS			1 kg	Plastic bottle	EM1.06637.1000
			25 kg	Fibre carton	EM1.06637.9025
Sodium sulfate anhydrous for analysis EMSURE® ACS, ISO, Reag. Ph Eur		7757-82-6	500 g	Plastic bottle	EM1.06649.0500
			1 kg	Plastic bottle	EM1.06649.1000
			5 kg	Plastic bottle	EM1.06649.5000
			25 kg	Fibre carton	EM1.06649.9025
For drying	Almost all compounds including fatty acids, aldehydes, ketones and alkyl and aryl halogenides.				
Application	Drying liquids; of average effect.				
Regeneration	At 150°C in a drying oven.				

Sulfuric acid [H ₂ SO ₄]		CAS No.	Content	Packaging	VWR Cat. No.
Sulfuric acid 95 – 97 % for analysis EMSURE® ISO		7664-93-9	1	Glass bottle	EM1.00731.1000
			1	Plastic bottle	EM1.00731.1011
			2.5 l	Glass bottle	EM1.00731.2500
			2.5 l	Safebreak btl.	EM1.00731.2510
			2.5 l	Plastic bottle	EM1.00731.2511
			25 l	Plastic container	EM1.00731.9025
For drying	ng Air, gases such as hydrogen chloride, chlorine, carbon monoxide, sulfur dioxide, hydrocarbons and				
	inert gases.				
Unsuitable for drying	Oxidizing gases such as hydrogen sulfides and hydrogen iodides and unsaturated and numerous other organic				
	compounds.				
Application	Sulfuric acid is used in wash bottles for drying gases or in open dishes in desiccators. To increase the surface				

pplication	Sulfuric acid is used in wash bottles for drying gases or in open dishes in desiccators. To increase the surface
	area and to avoid the risk of burns.

We provide information and advice to our customers on application technologies and regulatory matters to the best of our knowledge and ability, but without obligation or liability. Existing laws and regulations are to be observed in all cases by our customers. This also applies in respect to any rights of third parties. Our information and advice do not relieve our customers of their own responsibility for checking the suitability of our products for the envisaged purpose.

For more information on our products: www.vwr.com/emdmillipore

our privacy policy, trademark owners and additional disclaimers. ©2016 VWR International, LLC. All rights reserved.

0916 Lit. No. 051796W