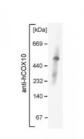


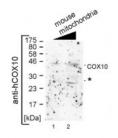
prosci-inc.com


HIGH PERFORMANCE ANTIBODIES ... AND MORE

ProSci Incorporated 12170 Flint Place Poway, CA 92064 Toll Free: +1 (888) 513 9525 Local: +1 (858) 513 2638 Fax: +1 (858) 513 2692

techsupport@prosci-inc.com

COX10 Antibody


CATALOG NUMBER: 26-032

Antibody used in WB on mouse mitochondria at 1:1000.

PROTEIN GI NO.:

17921982

Antibody used in WB on mouse mitochondria at 1:1000.

Antibody used in WB on Human Lung at 0.2-1 ug/ml.

Specifications	
SPECIES REACTIVITY:	Human, Mouse, Rat
TESTED APPLICATIONS:	ELISA, WB
APPLICATIONS:	COX10 antibody can be used for detection of COX10 by ELISA at 1:312500. COX10 antibody can be used for detection of COX10 by western blot at 1 ug/mL, and HRP conjugated secondary antibody should be diluted 1:50,000 - 100,000.
USER NOTE:	Optimal dilutions for each application to be determined by the researcher.
POSITIVE CONTROL:	1) Cat. No. XBL-10410 - Fetal Lung Tissue Lysate
PREDICTED MOLECULAR WEIGHT:	49 kDa
IMMUNOGEN:	Antibody produced in rabbits immunized with a synthetic peptide corresponding a region of human COX10.
HOST SPECIES:	Rabbit
Durantina	
Properties	
PURIFICATION:	Antibody is purified by peptide affinity chromatography method.
PHYSICAL STATE:	Lyophilized
BUFFER:	Antibody is lyophilized in PBS buffer with 2% sucrose. Add 50 uL of distilled water. Final antibody concentration is 1 mg/mL.
CONCENTRATION:	1 mg/ml
STORAGE CONDITIONS:	For short periods of storage (days) store at 4°C. For longer periods of storage, store COX10 antibody at -20°C. As with any antibody avoid repeat freeze-thaw cycles.
CLONALITY:	Polyclonal
CONJUGATE:	Unconjugated
Additional Info	
ALTERNATE NAMES:	COX10,
ACCESSION NO.:	NP_001294

OFFICIAL SYMBOL:	COX10
GENE ID:	1352
Background	
BACKGROUND:	Cytochrome c oxidase (COX), the terminal component of the mitochondrial respiratory chain, catalyzes the electron transfer from reduced cytochrome c to oxygen. COX10 is heme A: farnesyltransferase, which is not a structural subunit but required for the expression of functional COX and functions in the maturation of the heme A prosthetic group of COX. This protein is predicted to contain 7-9 transmembrane domains localized in the mitochondrial inner membrane. A gene mutation, which results in the substitution of a lysine for an asparagine (N204K), is identified to be responsible for cytochrome c oxidase deficiency. In addition, this gene is disrupted in patients with CMT1A (Charcot-Marie-Tooth type 1A) duplication and with HNPP (hereditary neuropathy with liability to pressure palsies) deletion.Cytochrome c oxidase (COX), the terminal component of the mitochondrial respiratory chain, catalyzes the electron transfer from reduced cytochrome c to oxygen. This component is a heteromeric complex consisting of 3 catalytic subunits encoded by mitochondrial genes and multiple structural subunits encoded by nuclear genes. The mitochondrially-encoded subunits function in electron transfer, and the nuclear-encoded subunits may function in the regulation and assembly of the complex. This nuclear gene encodes heme A:farnesyltransferase, which is not a structural subunit but required for the expression of functional COX and functions in the maturation of the heme A prosthetic group of COX. This protein is predicted to contain 7-9 transmembrane domains localized in the mitochondrial inner membrane. A gene mutation, which results in the substitution of a lysine for an asparagine (N204K), is identified to be responsible for cytochrome c oxidase deficiency. In addition, this gene is disrupted in patients with CMT1A (Charcot-Marie-Tooth type 1A) duplication and with HNPP (hereditary neuropathy with liability to pressure palsies) deletion. Publication Note: This RefSeq record includes a subset of the publications that are available

1) Veluthakal, R., (2007) Diabetes 56 (1), 204-210.

FOR RESEARCH USE ONLY

REFERENCES:

December 12, 2016