

Environmental testing for water

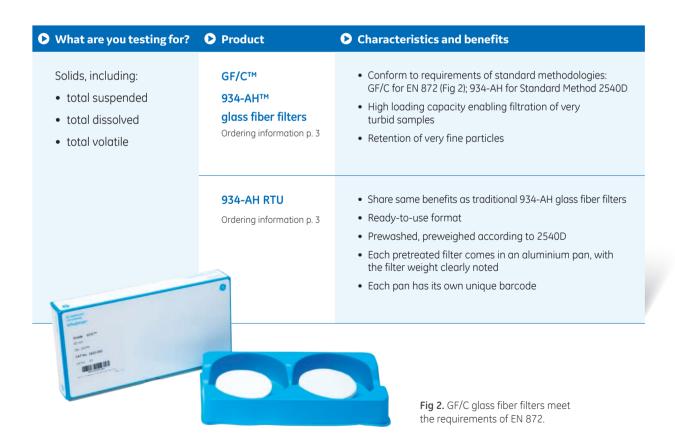
Physical analysis

Solids analysis

The level of suspended solids in a water sample is determined by pouring a carefully measured volume of water through a preweighed filter with a specified pore size, drying the filter to remove the water, and then weighing the filter again. The weight gain of the filter is a dry weight measure of the particulates present in the water sample expressed in units derived or calculated from the volume of water filtered (typically milligrams per liter).

Suspended solids measurements are typically performed using glass fiber filter circles that need additional preparation prior to use. However, GE has developed ready-to-use 934-AH RTU glass fiber filters, which are supplied in a prewashed and preweighed format and enable considerable time savings in the laboratory. 934-AH RTU filters also provide reproducible results and low background contamination.

Prepare filter per method by washing, drying, and weighing as appropriate


Filter and dry sample

Calculate weight of suspended solids captured on filter

Heat retained solids on filter to 500°C and measure weight change to calculate volatile solids

Evaporate liquid filtrate and weigh the retained solute to calculate dissolved solids

Fig 1. Total solids analysis workflow using filtration-based methods.

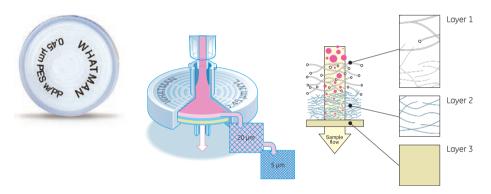
Ordering information Glass fiber filters for solids analysis, 100/pack

Grades	GF/C	934-AH	934-AH RTU preweighed, prewashed*
Typical particle retention (µm)**	1.2 μm	1.5 µm	1.5 µm
Diameter (mm)	Cat. No.	Cat. No.	Cat. No.
42.5	28497-685	28496-875	97040-974
47	28497-696	28496-886	97040-976
55	28497-700	28496-897	97040-978
70	28497-721	28496-911	-
90	28497-743	28496-933	89410-170

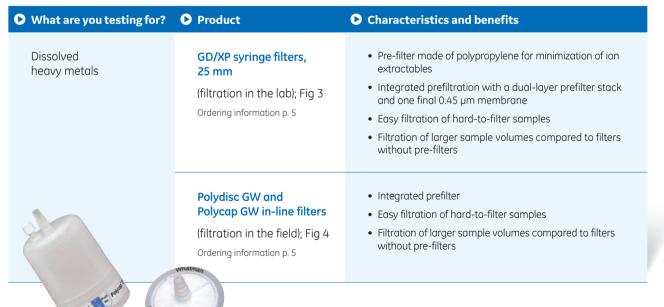
^{*} Each filter is supplied in an individual aluminum pan ** Particle retention rating at 98% efficiency

Chemical analysis

Dissolved heavy metals


Chemical analyses are commonly performed using analytic instrumentation. Filtration of water samples prior to analysis is good practice in order to remove unwanted particles from the analysis and to protect delicate instrumentation from potentially damaging compounds.

Accurate analysis of heavy metals such as lead or mercury depends on not introducing any interference into the sample from consumables used in the analytical preparation process. Water samples are often high in particulate matter, which can present filtration challenges because the particulates can


readily block membrane filters. Traditionally, a glass fiber pre-filter has been used to alleviate this problem. However, filters containing some types of glass fiber can introduce trace metals into the sample. To avoid potential sample contamination, GE offers a syringe filter that incorporates an effective pre-filter composed of polypropylene rather than glass fiber.

GD/XP syringe filters

GD/XP syringe filters can be used with samples that require inorganic ion analysis (e.g., trace metal analysis using inductively coupled plasma-mass spectrometry [ICP-MS]).

 $\textbf{Fig 3.} \ \ \text{GD/XP syringe filters contain multiple filtration layers, which subsequently reduce blockage and increase volume throughput.}$

Fig 4. Polycap GW (left) and Polydisc GW (right) are designed for sample preparation of ground water samples for the analysis of dissolved heavy metals.

Ordering information

GD/XP syringe filters

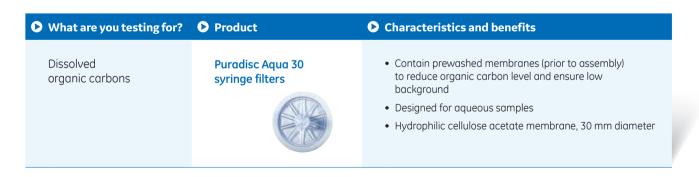
Membrane type	Nylon	PVDF	PP	PES	
Pore size (µm)	Cat. No.	Cat. No.	Cat. No.	Cat. No.	Quantity
0.45	28137-976	28137-980	-	28137-996	150/pack
0.45	10035-524	28137-982	28137-994	10035-526	1500/pack

In-line filters

Quantity	1/pack	100/pack	20/pack	50/pack
Product	Cat. No.	Cat. No.	Cat. No.	Cat. No.
Polydisc GW Filter 50 mm, nylon with quartz fiber prefilter, 0.45 µm	-	-	10035-122	10035-124
Polycap GW 75, 0.45 µm, PES membrane	13503-498	10035-490	-	-

Dissolved ions

Filters for sample preparation prior to ion chromatography testing should feature very low levels of anion leaching.


Ordering information Anotop IC syringe filters

Membrane/pore size	Diameter	Quantity	Cat. No.
Aluminum oxide – 0.2 µm	10 mm	100/pack	-
Aluminum oxide – 0.2 µm	10 mm	200/pack	10035-510
Aluminum oxide – 0.2 μm	25 mm	200/pack	28297-720

Dissolved organic carbons

Organic matter content is usually measured as dissolved organic carbon (DOC), which is an important component of the carbon cycle. DOC is defined as the organic matter that is able to pass through a filter, typically one with a 0.45 µm pore size.

Puradisc Aqua syringe filters are specifically designed for filtration of environmental samples prior to DOC analysis.

Ordering information Puradisc Aqua syringe filters

Membrane/pore size	Diameter	Quantity	Cat. No.
Cellulose acetate – 0.45 µm	30 mm	50/pack	10035-110
Cellulose acetate – 0.45 µm	30 mm	100/pack	10035-108
Cellulose acetate – 0.45 µm	30 mm	500/pack	10035-106

HPLC, UHPLC, and other analytical techniques

What are you Product Characteristics and benefits testing for? Low solids • Wide range of membranes, pore sizes and diameters **Puradisc** content · Pre-filter: no Ordering information • Diameter: 4, 13, 25, or 30 mm p. 8 • Available pore sizes: 0.1, 0.2, 0.45, 0.8, 1.0, 1.2, 5 µm • Membrane materials available: Cellulose acetate, nylon, PES, PVDF, PP, PTFE, GF HPLC certified **SPARTAN™** • Pre-filter: no Ordering information • Diameter: 13 or 30 mm p. 8 • Available pore sizes: 0.2 or 0.45 µm • Membrane materials available: Regenerated cellulose Hard-to-filter • For hard-to-filter samples Whatman samples GD/X™ • Pre-filter: multilayer glass filter • Diameter: 13 or 25 mm Ordering information • Available pore sizes: 0.2, 0.45, 0.7, 1.0, 1.2, 1.5, 2.7, 5.0 μm p. 8 • Membrane materials available: Cellulose acetate, nylon, PES, PVDF, PP, PTFE, RC GD/XP • For hard-to-filter samples where analytes of interest are inorganic ions • Pre-filter: Multilayer polypropylene Ordering information • Diameter: 25 mm p. 8 • Available pore sizes: 0.45 µm • Membrane materials available: Nylon, PES, PVDF, PP, PTFE HPLC/GC Mini-UniPrep™ • All-in-one filter and PLASTIC autosampler vial autosamplers • Pre-filter: no Ordering information p. 9 • Dimensions: Once compressed equivalent to 12 mm × 32 mm vial • Available pore sizes: 0.2 or 0.45 µm • Membrane materials available: PTFE, RC, Nylon, PVDF, PES, PP, GMF Mini-UniPrep G2 • All-in-one filter and GLASS autosampler vial • Pre-filter: no Ordering • Dimensions: Once compressed equivalent to 12 mm × 32 mm vial information p. 9 • Available pore sizes: 0.2 or 0.45 µm • Membrane materials available: PTFE, Nylon, PVDF, PP, GMF, RC

RC = regenerated cellulose, PVDF = polyvinylidene difluoride, PTFE = polytetrafluoroethylene, PP = polypropylene, PES = polyethersulfone, GMF = glass microfiber filter, GF = glass fiber, CA = cellulose acetate

Regenerated cellulose membranes

Suitable for filtration of both aqueous and organic samples. We offer a range of filters for sample preparation for commonly used analytical techniques in water monitoring such as:

- HPLC or UHPLC
- Continuous flow analysis
- Gas chromatography (GC)

Ordering information – chemical analysis of water

Puradisc syringe filters

Membrane type/ diameter	Nylon 25 mm	PVDF 25 mm	PTFE 25 mm	PP 25 mm	PES 25 mm		CA 30 mm	
Pore size	Cat. No.	Cat. No.	Cat. No.	Cat. No.	Cat. No.	Quantity	Cat. No.	Quantity
0.2 µm	28205-510	89233-770	28137-932	28137-958	28137-942	200/pack	89233-772	100/pack
0.2 µm	28205-530	-	70240-162	28137-974	14233-762	1000/pack	89233-774	500/pack
0.45 μm	28205-512	70240-170	28137-934	28137-960	28137-944	200/pack	11008-550	100/pack
0.45 µm	28205-532	70240-174	70240-160	28137-967	28455-248	1000/pack	89233-776	500/pack

SPARTAN syringe filters

Diameter		13 mm	13 mm with mini-tip	30 mm	
Membrane	Pore size	Cat. No.	Cat. No.	Cat. No.	Quantity
Regenerated cellulose	0.2 µm	52844-782	52844-786	97005-228	100/pack
Regenerated cellulose	0.2 µm	97005-224	97005-226	97005-230	500/pack
Regenerated cellulose	0.45 µm	52844-780	52844-784	97005-232	100/pack
Regenerated cellulose	0.45 µm	97005-220	97005-222	97005-234	500/pack

GD/X syringe filters (glass fiber prefilter), 25 mm diameter

Membrane type	Nylon	PVDF	PTFE	PP	PES	CA	RC	
Pore size	Cat. No.	Quantity						
0.2 μm	28138-154	28138-158	28138-162	28138-170	28138-166	28138-174	89233-780	150/pack
0.2 μm	28138-192	28138-196	28138-200	-	89233-778	-	-	1500/pack
0.45 µm	28138-156	28138-160	28138-164	28138-172	28138-168	28138-176	89233-782	150/pack
0.45 µm	28138-194	28138-198	28138-202	14005-864	14217-554	80087-208	89233-784	1500/pack

GD/XP syringe filters (polypropylene prefilter), 25 mm diameter

Membrane type	Nylon	PVDF	PTFE	PP	PES	
Pore size	Cat. No.	Quantity				
0.45 μm	28137-976	28137-980	28137-984	28137-988	28137-996	150/pack
0.45 µm	10035-524	28137-982	-	28137-994	10035-526	1500/pack

Mini-UniPrep with polypropylene housing

Membrane	e type		PTFE	PVDF	Nylon	PP	RC	PES	
Pore size	Housing	Сар	Cat. No.	Quantity					
0.2 µm	Translucent	Standard	14224-946	14224-978	14224-976	14224-930	97015-564	14224-914	100/pack
0.45 µm	Translucent	Standard	28137-758	28137-762	28137-754	28137-766	97015-562	10147-936	100/pack
0.2 µm	Amber	Standard	84009-508	84009-504	84009-506	84009-512	-	84009-510	100/pack
0.45 µm	Amber	Standard	83009-802	84009-514	89233-786	83009-806	-	83009-804	100/pack
0.2 µm	Translucent	Slit septum	12000-528	12000-524	12000-526	12000-532	-	12000-530	100/pack
0.45 µm	Translucent	Slit septum	83009-816	83009-808	83009-814	83009-820	-	-	100/pack

Mini-UniPrep G2 with inner glass storage vial (hand or multicompressor required for use)

Membrane	e type		PTFE	PVDF	Nylon	PP	GMF	RC	
Pore size	Housing	Сар	Cat. No.	Quantity					
0.2 µm	Translucent	Standard	89234-956	89234-964	89234-970	89234-974	-	10036-036	100 + 1 HC
0.2 µm	Translucent	Standard	89234-954	89234-962	-	89234-972	-	10036-034	100/pack
0.45 µm	Translucent	Standard	89234-960	89234-968	_	_	10035-926	10035-922	100 + 1 HC
0.45 µm	Translucent	Standard	-	89234-966	_	_	10036-030	10035-920	100/pack
0.2 µm	Amber	Standard	89234-976	89234-978	-	-	-	-	100 + 1 HC
0.2 µm	Translucent	Slit septum	89234-980	-	-	-	-	-	100 + 1 HC
0.45 µm	Translucent	Slit septum	89234-982	-	-	-	10035-948	-	100 + 1 HC
0.45 µm	Translucent	Slit septum	-	-	-	-	10036-032	-	100/pack

HC = Hand compressor

Compressors for Mini-UniPrep

Compressor suitable for	Description	Cat. No.	Quantity
Mini-UniPrep G2 (glass vial)	Hand compressor - 1 position	89236-660	1/pack
	Multi Compressor - 8 positions (includes 1 tray)	89499-526	1/pack
Mini-UniPrep (plastic vial)	Multi Compressor - 6 positions	14227-832	1/pack

Fig 5. Mini-UniPrep G2 Multi Compressor.

Microbiological analysis

Bacterial count and/or detection

MBS I system and membranes

The MBS I filtration system is designed for laboratories that handle high numbers of samples for microbiological quality control.

Workflow

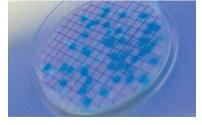
(A) Tight sealing of funnel and membrane reducing any cross contamination to a minimum by special sealing technique.

(B) Flexibility.

- Volume-either 100 ml or 350 ml
- Material—either ABS or PP
- PP version can be autoclaved up to 50 times

(C) Easy removal of the membrane.

Membranes


We provide a wide and versatile range of filtration membranes that deliver high-quality performance consistently. The appropriate membrane fi ter choice will depend on the methodology being followed. ME and Microplus membranes are sterile and individually packed.

Membrane material	Cellulose mixed ester	High-flux cellulose nitrate	Nylon (polyamide)	Polycarbonate	
Product name	ME	MicroPlus	NL	Nuclepore™	
Color	White, black or green	White or black	White	White or black	
Pore size	0.2 μm/0.45 μm/ 0.6 μm/0.8 μm	0.45 μm	0.2 μm/0.45 μm	0.2 µm/0.4 µm (and other pore sizes)	
Application examples	· · ·	Clostridia, Fecal coliforms, Iomonas aeruginosa, etc	Legionella	Legionella	

Filtration considerations

Microorganisms in a water sample are collected using a microfiltration membrane filter. The membrane can then be transferred onto a microbiological culture medium for further identification and/or quantification of microorganisms.

Membrane filtration methods are commonly used for the detection of microorganisms such as *E. coli, Clostridia*, fecal coliforms, *Legionella*, *Staphylococci,* and *Pseudomonas aeruginosa*. These methods involve the use of membrane filters and filtration manifolds.

Fig 6. Gridded membrane on agar plate containing bacterial colonies.

What are you testing for?	▶ Product	Characteristics and benefits						
Bacterial count and/or detection	Membranes	 Both sterile and nonsterile options Range of pore sizes available ME and MicroPlus membranes are sterile and individually packed. They contain a folded strip of filters for use with our membrane dispenser 						
	Accessories: Membrane-Butler membrane dispenser (manual version); Fig 7	With each turn a membrane filter is ejected and can be removed easily with a pair of tweezers. Cross-contamination risks are minimized Membrane is dispensed rapidly						
	Other microbiological control accessories: funnel dispenser, funnels, tweezers, autoclaving bags	Waste reduction, because PP funnels can be autoclaved up to 20 times Time saving; no need to flame in between filtrations Easy handing Reduce cross-contamination Reproducible results Low background contamination						

Ordering information

Membrane filters

Diameter				Membrane-Butler	25 mm	47 mm	50 mm	
Membrane material/type	Pore size	Color	Sterile	compatible	Cat. No.	Cat. No.	Cat. No.	Quantity
Cellulose mixed ester/	0.2 μm	white	yes	no	-	89233-756	89233-758	100/pack
ME type	0.2 μm	white	yes	yes	-	89233-760	89233-762	400/pack
	0.45 µm	white	yes	no	-	11008-580	10034-968	100/pack
	0.45 µm	white	yes	yes	-	13500-170	28151-150	400/pack
	0.45 µm	black/white grid	yes	yes	-	10035-800	-	100/pack
	0.45 µm	black/white grid	yes	yes	-	13500-162	-	400/pack
Cellulose nitrate/	0.45 µm	white	yes	no	-	89233-750	89233-752	100/pack
Microplus	0.45 µm	white	yes	yes	-	74330-508	74330-510	400/pack
	0.45 µm	black	yes	no	-	-	89233-754	100/pack
	0.45 µm	black	yes	yes	-	-	-	400/pack
Polycarbonate/	0.2 µm	white	no	no	-	28157-927	10035-584	100/pack
Nuclepore	0.4 µm	white	no	no	-	28157-960	10035-586	100/pack
	0.8 µm	black	no	no	-	-	_	100/pack
Nylon (Polyamide)/NL	0.4 µm	white	no	no	-	28152-899	10035-004	100/pack

Accessories for microbiological control

Product	Description	Quantity/pack	Cat. No.
AS 200	2-place vacuum manifold	1	74330-496
Funnel dispenser	Automatic dispenser for funnels	1	74330-498
Funnels 100 ml	PP (autoclavable)	20	74330-500
Funnels 350 ml	PP (autoclavable)	20	74330-504
Autoclaving bags	Autoclaving bags for MBS I funnels	20	89233-746
Membrane-Butler	Manual dispenser for membranes	1	28151-134

Fig 7. Membrane-Butler

Chemical compatibility of membranes and housings*

Selecting the right filter depends on the solvent that you are using for your application. This table will help ensure that you get it right the first time.

Solvent	ANP	CA	CN	PC	PE	GMF	NYL	PP	DpPP	PES	PTFE‡	PVDF	RC
Acetic acid, 5%	R	LR	R	R		R	R	R	R	R	R	R	R
Acetic acid, glacial	R	NR	NR			R	LR	R	R	R	R	R	NR
Acetone	R	NR	NR	NR	R	R	R	R	R	NR	R	NR	R
Acetonitrile	R	NR	NR			R	R	R	R	NR	R	R	R
Ammonia, 6 N	NR	• • • • • • • • • •	NR	NR	LR	LR	R	R	R	R	R	LR	LR
Amyl acetate	LR	NR	NR	NR	R	R	R	R	R	LR	R	LR	R
Amyl alcohol	R	LR	LR		• • • • • • • • • • • • • • • • • • • •	R	R	R	R	NR	R	R	R
Benzene [†]	R	R	R	NR	R	R	LR	NR	NR	R	R	R	R
Benzyl alcohol†	R	LR	LR	LR	R	R	LR	R	R	NR	R	R	R
Boric acid	R	R	R	R	R	R	LR	R	R		R	R	R
Butyl alcohol	R	R	R	R	R	R	R	R	R	R	R	R	R
Butyl chloride [†]		• • • • • • • • • •	* * * * * * * * * * * * * * * * * * * *		• • • • • • • • • •	R	NR	NR	NR		R	R	
Carbon tetrachloride†	R	NR	R	LR	R	R	LR	NR	NR	NR	R	R	R
Chloroform [†]	R	NR	R	NR	R	R	NR	LR	LR	NR	R	R	R
Chlorobenzene†	R		LR	NR	• • • • • • • • • •	R	NR	LR		NR	R	R	R
Citric acid			• • • • • • • • • • •		• • • • • • • • • • •	R	LR	R		R	R	R	R
Cresol		NR	R		• • • • • • • • • •	R	NR	NR	NR	NR	R	NR	R
Cyclohexane	R	NR	NR	R	R	R	NR	NR	NR	NR	R	R	R
Cyclohexanone	R	NR	NR		• • • • • • • • • • •	R	NR	R	R	NR	R	R	R
Diethylacetamide		NR	NR		• • • • • • • • • •	R	R	R	R		R	NR	R
Dimethylformamide	LR	NR	NR		• • • • • • • • • • •	R	R	R	R	NR	R	NR	LR
Dioxane	R	NR	NR	NR	R	R	R	R	R	LR	R	LR	R
DMSO	LR	NR	NR	NR	R	R	R	R	R	NR	R	LR	LR
Ethanol	R	R	NR	R	R	R	R	R	R	R	R	R	R
Ethers	R	LR	LR	R	R	R	R	NR	NR	R	R	LR	R
Ethyl acetate	R	NR	NR	NR	R	R	R	R	R	NR	R	NR	R
Ethylene glycol	R	LR	LR	R	R	R	R	R	R	R	R	R	R
Formaldehyde	LR	LR	R	R	R	R	R	LR	LR	R	R	R	LR
Freon TF	R	R	R	R	R	R	NR	NR	NR	R	R	R	
Formic acid	• • • • • • • •	LR	LR		• • • • • • • • • •	R	NR	R	R	R	R	R	LR
Hexane	R	R	R	R	R	R	R	R	R	R	R	R	R
Hydrochloric acid, conc.	NR	NR	NR	NR	NR	R	NR	LR	LR	R	R	R	NR
Hydrofluoric acid		NR	NR		• • • • • • • • • •	NR	NR	LR	LR		R	R	NR

Solvent	ANP	CA	CN	PC	PE	GMF	NYL	PP	DpPP	PES	PTFE‡	PVDF	RC
Isobutyl alcohol	R	LR	LR	R	R	R	R	R	R		R	R	R
Isopropyl alcohol	R	R	LR	**********	• • • • • • • • • •	R	R	R	R		R	R	R
Methanol	R	R	NR	R	R	R	R	R	R	R	R	R	R
Methyl ethyl ketone	R	LR	NR	NR	R	R	R	R	R	NR	R	NR	R
Methylene chloride†	R	NR	LR			R	NR	LR	LR	NR	R	R	R
Nitric acid, conc.		NR	NR	LR	NR	R	NR	NR	NR	NR	R	R	NR
Nitric acid, 6 N		LR	LR			R	NR	LR	LR	LR	R	R	LR
Nitrobenzene†	LR	NR	NR	NR	R	R	LR	R	R	NR	R	R	R
Pentane	R	R	R	R	R	R	R	NR	NR	R	R	R	R
Perchloroethylene	R	R	R			R	LR	NR	NR	NR	R	R	R
Phenol 0.5%	LR	LR	R	• • • • • • • • • • • • • • • • • • • •		R	NR	R	R	NR	R	R	R
Pyridine	R	NR	NR	NR	R	R	LR	R	R	NR	R	NR	R
Sodium hydroxide, 6N	NR	NR	NR	NR	NR	NR	LR	R	R	R	R	NR	NR
Sulfuric acid, conc.	NR	NR	NR	NR	NR	R	NR	NR	NR	NR	R	NR	NR
Tetrahydrofuran	R	NR	NR	• • • • • • • • • • • • • • • • • • • •		R	R	LR	LR	NR	R	R	R
Toluene [†]	R	LR	R	NR	R	R	LR	LR	LR	NR	R	R	R
Trichloroethane†	R	NR	LR	NR	R	R	LR	LR	LR	NR	R	R	R
Trichloroethylene [†]	R		R			R	NR	LR	LR	NR	R	R	R
Water	R	R	R	R	R	R	R	R	R	R	R	R	R
Xylene [†]	R	R	R			R	LR	LR	LR	LR	R	R	R
Xylene [†]	R	R	R			R	LR	LR	LR	LR	R	R	R

^{*} ANP = Anopore; CA = Cellulose acetate; CN = Cellulose nitrate; DpPP = Polypropylene depth filter; GMF = Glass microfiber; NYL = Nylon; PC = Polycarbonate;

PE = Polyester; PES = Polyethersulfone; PP = Polypropylene; PTFE = Polytetrafluoroethylene; PVDF = Polyvinylidene difluoride; RC = Regenerated cellulose R = Resistant; PVDF = Polytetrafluoride; RC = Regenerated cellulose R = Resistant; PVDF = Polytetrafluoride; RC = Regenerated cellulose R = Resistant; PVDF = Polytetrafluoride; RC = Regenerated cellulose R = Resistant; PVDF = Polytetrafluoride; RC = Regenerated cellulose R = Resistant; PVDF = Polytetrafluoride; RC = Regenerated cellulose R = Resistant; PVDF = Polytetrafluoride; RC = Regenerated cellulose R = Resistant; PVDF = Polytetrafluoride; RC = Regenerated cellulose R = Resistant; PVDF = Polytetrafluoride; RC = Regenerated cellulose R = Resistant; PVDF = Polytetrafluoride; RC = Regenerated cellulose R = Resistant; PVDF = Polytetrafluoride; RC = Regenerated cellulose R = Resistant; PVDF = Polytetrafluoride; RC = Regenerated cellulose R = Resistant; PVDF = Polytetrafluoride; RC = Regenerated cellulose R = Resistant; PVDF = Polytetrafluoride; RC = Regenerated cellulose R = Resistant; PVDF = Polytetrafluoride; RC = Regenerated cellulose R = Resistant; PVDF = Polytetrafluoride; PVDF = PVD

LR = Limited Resistance; NR = Not Recommended.

 $^{^{\}dagger}$ Short Term Resistance of Housing.

 $^{^{\}ddagger}$ Membrane may need pre-wetting with isopropanol/methanol if filtering a polar liquid.

The above data is to be used as a guide only. Testing prior to application is recommended.

Visit vwr.com for additional information on GE Healthcare Life Sciences products

GE, GE monogram, 934-AH, Anopore, Anotop, Benchkote, Cyclopore, GF/C, Mini-UniPrep, Nuclepore, SPARTAN, Whatman, and Whatman GD/X are trademarks of General Electric Company. All other third-party trademarks are the property of their respective owners.

© 2016 General Electric Company. First published Feb. 2016

