

Instructions 71-7005-00 AY

HiTrap Chelating HP, 1 ml and 5 ml

HiTrap[™] Chelating HP is a prepacked ready to use, column for preparative affinity chromatography. The special design of the column, together with the matrix, provide fast, simple and easy separations in a convenient format.

The columns can be operated with a syringe, peristaltic pump or liquid chromatography system such as ÄKTA™ design.

Code No.	Designation	No. per pack
17-0408-01	HiTrap Chelating HP	5 × 1 ml
17-0409-01	HiTrap Chelating HP	1 × 5 ml
17-0409-03	HiTrap Chelating HP	5 × 5 ml
17-0409-05	HiTrap Chelating HP	$100 \times 5 \text{ ml}^1$

¹ Special package delivered on specific order.

Connector kit

Connectors supplied	Usage	No. supplied
1/16" male/ luer female	Connection of syringe to top of HiTrap column	1
Tubing connector flangeless/ M6 female	Connection of tubing (e.g. Peristaltic Pump P1) to bottom of HiTrap column ¹	1
Tubing connector flangeless/M6 male	Connection of tubing (e.g. Peristaltic Pump P1) to top of HiTrap column ²	1
Union 1/16" female/M6 male	Connection to original FPLC™ System through bottom of HiTrap column	1
Union M6 female/ 1/16" male	Connection to original FPLC System through top of HiTrap column	1
Stop plug female, 1/16"	Sealing bottom of HiTrap column	2, 5 or 7

¹ Union 1/16" female/M6 male is also needed.

² Union M6 female/1/16" male is also needed.

Table of contents

1.	Description	4
2.	General considerations	6
3.	Operation	7
4.	Purification	11
5.	Purification of histidine-tagged recombinant proteins.	12
6.	Scaling up	13
7.	Storage	13
8.	Intended use	13
9.	References	13
10	. Ordering information	14

1 Description

Medium properties

HiTrap Chelating HP 1 ml and 5 ml are packed with 1 ml and 5 ml of Chelating Sepharose™ High Performance, respectively. Chelating Sepharose High Performance consists of highly crosslinked agarose beads to which iminodiacetic acid has been coupled by stable ether groups via a spacer arm (seven-atoms). This coupling technique gives both high capacity and high performance. The medium is stable over the pH range 3–13, and tolerates all commonly used aqueous buffers and denaturants, such as 6 M guanidine hydrochloride, 8 M urea, and chaotropic salts. Several amino acids, for example histidine, form complexes with many metal ions. Chelating Sepharose High Performance, charged with suitable metal ions, will selectively retain proteins if complex forming amino acid residues are exposed on the surface of the protein.

The characteristics of the product are summarized in Table 1.

Column

HiTrap Chelating HP 1 ml and 5 ml columns are made of polypropylene, which is biocompatible and non-interactive with biomolecules. The top and bottom frits are manufactured from porous polyethylene. It is delivered with a stopper on the inlet and a snap-off end on the outlet.

The separation can be easily achieved using a syringe together with the supplied luer connector, a peristaltic pump, or in a chromatography system such as ÄKTA design.

Note: To prevent leakage it is essential to ensure that the connector is tight.

The column cannot be opened or refilled.

Column volumes	1 ml or 5 ml
Column dimensions (i.d.x h.)	0.7 \times 2.5 cm (1 ml) and 1.6 \times 2.5 cm (5 ml)
Chelating group	Iminodiacetic acid
Metal ion capacity	~ 23 µmol Cu ²⁺ /ml medium
Binding capacity	$\sim 12~mg$ pure (histidine)_6-tagged protein (Mr $\sim 27~600)$ per ml/medium
Mean particle size	34 µm
Bead structure	Highly cross-linked spherical agarose, 6%
Max back pressure	0.3 MPa, 3 bar
Max. flow rates	4 ml/min and 20 ml/min for 1 ml and 5 ml column respectively
Recommended flow rate	1 ml/min and 5 ml/min for 1 ml and 5 ml column respectively
Chemical stability	Stable in all commonly used buffers and denaturants such as 6 M guanidine hydrochloride, 8 M urea and chaotropic salts.
pH stability1	
short term	2 to 14
long term	3 to 13
Avoid (during purification)	Chelating agents, e.g. EDTA, EGTA Reducing agents, e.g. DTT, DTE
Storage	20% ethanol at 4°C to 30°C

Table 1. HiTrap Chelating HP characteristics.

¹ The ranges given are estimates based on our knowledge and experience. Please note the following:

pH stability, short term, refers to the pH interval for regeneration, cleaning-in-place and sanitization procedures.

pH stability, long term, refers to the pH interval where the medium is stable over a long period of time without adverse effects on its subsequent chromatographic performance.

2 General considerations

HiTrap Chelating HP is supplied free of metal ions and has to be charged with a suitable metal ion before use. It is not always possible to predict which metal ion is most appropriate. The metal ions most often used are nickel (Ni²⁺), copper (Cu²⁺) and zinc (Zn²⁺). A single exposed histidine residue may result in adsorption of the protein on Cu²⁺ while two vicinal histidine residues are needed for adsorption on Zn²⁺. Ni²⁺ ions are often used for the purification of recombinant histidine-tagged proteins. In some cases Fe²⁺, Co²⁺, and Ca²⁺ have been used with success.

It is a possibility to check different metal ions for optimizing the purification of histidine-tagged proteins, as different metal ions give different binding of the protein.

The choice of binding buffer depends on the properties of the chelated metal ion and the binding properties of the sample molecules. Adsorption at neutral to alkaline pH's in the presence of 0.5 M–1.0 M NaCl is recommended. Sodium acetate and sodium phosphate buffers are often used. Tris-HCl tends to reduce binding and should only be used when the metal-protein affinity is high. Chelating agents such as EDTA or citrate should not be included.

Note: Phospate buffers can not be used in combination with Ca²⁺ because of the risk of formation of insoluble Ca₃(PO₄)₂crystals.

The addition of salt, e.g. 0.5–1.0 M NaCl, in the eluent is to eliminate any ion exchange effects. This can also have a marginal effect on the retention of proteins.

Elution of the proteins from the medium can be achieved by several different methods or combinations of methods. pH adjustment within the range of 2.5–7.5 is a frequently used technique. At pH values below 4, metal ions will be stripped off the medium.

A displacing agent such as ammonium chloride, imidazole or histidine are also frequently used. Chelating agents such as EGTA or EDTA will strip the metal ions from the medium and cause desorption.

The columns can be operated with a syringe, peristaltic pump or a chromatography system.

Note: Ni²⁺ may cause allergic reactions.

3 Operation

Buffer preparation

Water and chemicals used for buffer preparation should be of high purity. It is recommended to filter the buffers by passing them through a 0.45 μm filter before use.

As a general method when Cu²⁺ is used as the metal ion, we recommend the following start and elution buffers.

Alt. 1: Competitive elution

Binding buffer: 0.02 M sodium phosphate, 1 M NaCl, pH 7.2 Elution buffer: 0.02 M sodium phosphate, 1 M NH₄Cl, pH 7.2

Alt. 2: Lowering of pH

Binding buffer: 0.02 M sodium phosphate, 0.5 M NaCl, pH 7.2 Elution buffer: 0.02 M sodium phosphate, 0.5 M NaCl, pH 3.5

Alt. 3: Stripping elution

Binding buffer: 0.02 M sodium phosphate, 0.5 M NaCl, pH 7.2 Elution buffer: 0.02 M sodium phosphate, 0.5 M NaCl, 0.05 M EDTA, pH 7.2

Note: Elution using "Alternative 2" leads to the eluted proteins being exposed to low pH. If the proteins are pH sensitive, it is recommended that the eluted fractions should be collected in tubes containing 1 M Tris-HCl, pH 9.0 (60-200 μl/ml fraction) to restore the pH to neutral.

> "Alternative 3" results in the presence of the metal ion bound to EDTA in the eluate. Thus, it may be necessary to perform a buffer exchange step, e.g. using a HiTrap Desalting column (Table 2), to achieve the correct buffer conditions. See also "Purification of histidine-tagged recombinant proteins", page 12.

Sample preparation

The sample should be adjusted to the composition of the binding buffer. This can be done by either diluting the sample with binding buffer or by buffer exchange using HiTrap Desalting, HiPrepTM 26/10 Desalting or PD-10 column. The sample should be filtered through a 0.45 µm filter or centrifuged immediately before it is applied to the column, *see* Table 2.

For optimal conditions for growth, induction and cell lysis conditions of your recombinant histidine-tagged clones, please refer to recommended protocols.

Column	Code No.	Loading volume	Elution volume	Comments	Application
HiPrep 26/10 Desalting	17-5087-01	2.5–15 ml	7.5-20 ml	Prepacked with Sephadex ^{1M} G-25 Fine. Requires a laboratory pump or a chromatography system to run.	For desalting and buffer exchange of protein extracts (Mr > 5000).
HiTrap Desalting	17-1408-01	0.25–1.5 ml	1.0-2.0 ml	Prepacked with Sephadex G-25 Superfine. Requires a syringe or pump to run.	
PD-10 Desaltina	17-0851-01	1.0-2.5 ml ¹	3.5 ml ¹	Prepacked with Sephadex G-25 Medium	For desalting, buffer exchange and cleanup
PD MiniTrap TM G-25	28-9180-07	10.2-c1.1 m 0.1- 0.5 m ¹ 0.2-0.5 ml ²	up to 2.5 ml ² 1.0 ml ¹ Up to 0.5 ml ²	Runs by gravity flow or centrifugation	of proteins and other large biomolecules (M _r > 5000).
PD MidiTrap™ G-25	28-9180-08	0.5-1.0 ml ¹ 0.75-1.0 ml ²	1.5 ml ¹ Up to 1.0 ml ²		
 Volumes with g Volumes with c 	jravity elution :entrifugation				

Column preparation

- 1 Fill the syringe or pump tubing with distilled water. Remove the stopper and connect the column to the syringe (with the provided luer connector), or pump tubing, "drop to drop" to avoid introducing air into the system.
- 2 Remove the snap-off end at the column outlet.
- 3 Wash the column with 5 ml or 15 ml distilled water for HiTrap 1 ml or 5 ml column, respectively. At this stage do not use buffer instead of water to wash away the 20% ethanol solution as metal ion precipitation can occur in step 4, depending on the buffer used.
- 4 Load 0.5 ml or 2.5 ml of 0.1 M metal salt solution (metal chloride and -sulphate salts e.g. 0.1 M CuSO₄ or 0.1 M NiSO₄ are commonly used) in distilled water on HiTrap 1 ml and 5 ml column respectively.
- 5 Wash with distilled water, 5 ml or 15 ml respectively.
- Note: When working with Fe^{3+} extra precautions have to be taken.

In neutral solutions, Fe³⁺ is easily reduced and forms compounds that can be hard to dissolve. Media loaded with Fe³⁺ should not be left for long times in neutral solutions. Fe³⁺ should be immobilized in low pH, approximately pH 3, to avoid precipitation of insoluble compounds.

After charging the column and competitive elution is going to be used during the purification, perform a blank run to elute unspecifically bound metal ions that might otherwise be eluted during the desorption. Add 5 column volumes elution buffer, using the conditions planned for the separation step. Re-equilibrate the column with 5–10 column volumes of start buffer before sample application.

When performing lowering pH or stripping elution, no blank run should be done with elution buffer since this will remove metal ions from the medium.

4 Purification

- After column preparation equilibrate the column with binding buffer by washing with 5–10 column volumes. Recommended flow rates are 1 ml/min or 5 ml/min for 1 ml and 5 ml column respectively.
- 2 Apply the sample, using a syringe or a pump. A partial displacement of chelated metal ions is often noted as the protein is adsorbed. This is visible, especially when using metal ions that are colored, such as Cu²⁺ and Ni²⁺, as a downward extension of the zone of chelated ions.

The volume of the sample is not critical if substances are tightly bound under binding conditions. Weakly bound substances should be applied in a small volume (about 5% of bed volume) to avoid co-elution with non-adsorbed material.

- 3 Wash with 5–10 column volumes binding buffer. To increase the purity of eluted protein a wash with binding buffer containing 5–40 mM imidazole is often effective when working with recombinant (histidine)₆-tagged proteins (3–5 column volumes).
- Note: If the protein of interest is not bound tightly to the column the imidazole concentration should be kept low to avoid too early elution.
- 4 Elute with elution buffer using a step or linear gradient. 2–5 column volumes is usually sufficient if the molecule of interest is rapidly eluted, e.g. a simple protein mixture eluted by a step gradient. Other volumes (or a different elution buffer) may be required if the interaction is difficult to break. A shallow gradient is used to separate proteins with similar binding strengths, e.g. a linear gradient of 10–20 column volumes.
- Note: 500 mM imidazole has A₂₈₀ ~ 0.5 (5 mm cell). Use the elution buffer as blank. If imidazole needs to be removed from the protein use HiTrap Desalting, HiPrep 26/10 Desalting or PD-10 columns.
- Note: If a P1-pump is used a max flow rate of 1–3 ml/min can be run on a HiTrap 1 ml column packed with Sepharose High Performance media.

Re-equilibration

Strip the column by washing with 5 column volumes start buffer containing 0.05 M EDTA. This should be followed by washing with 5–10 columns volumes of distilled water before re-charging the column following the instructions under column preparation. The loss of metal ions is more pronounced at lower pH. The column does not have to be stripped between each purification if the same protein is going to be purified. Then perform stripping and re-charging of the column after 5–10 purifications.

The reuse of HiTrap Chelating HP depends on the nature of the sample and should only be performed with identical recombinant proteins, to prevent cross-contamination.

5 Purification of histidine-tagged recombinant proteins

HiTrap Chelating HP, when charged with Ni²⁺ ions, will selectively retain proteins if complex-forming amino acid residues, in particular histidine, are exposed on the surface of the protein. Histidine-tagged proteins can be eluted from HiTrap Chelating HP with buffers containing imidazole.

Recommended buffers

Binding	0.02 M sodium phosphate, 0.5 M NaCl,
buffer:	5–40 mM imidazole, pH 7.4
Elution	0.02 M sodium phosphate, 0.5 M NaCl,
buffer:	0.5 M imidazole, pH 7.4

If the recombinant histidine-tagged proteins are expressed as inclusion bodies add 6 M guanidine hydrochloride or 8 M urea to all buffers. For further information, *see* Ref. 1 and 2.

6 Scaling up

Two or three HiTrap 1 ml resp. 5 ml columns can be connected in series for quick scaling up of purifications (backpressure will increase).

7 Storage

Store the column in 20% ethanol at 4°C to 30°C. For longer storage the column should be stripped of metal ions.

8 Intended use

The HiTrap Chelating HP is intended for research use only, and shall not be used in any clinical or *in vitro* procedures for diagnostic purposes.

9 References

- Colangeli R., et al. Three-step purification of lipopolys-accaridefree polyhistidinetagged recombinant antigens of Myobacterium tuberculosis. J. of Chromatography B, 714 (1998), 223–235.
- Rapid and efficient purification and refolding of a (histidine)₆-tagged recombinant protein produced in *E. coli* as inclusion bodies, 18-1134-37, GE Healthcare.

10 Ordering information

Product	No. supplied	Code no.
HiTrap Chelating HP	5 × 1 ml	17-0408-01
	1 × 5 ml	17-0409-01
	5 × 5 ml	17-0409-03
	$100 \times 5 \text{ ml}^1$	17-0409-05
Related products	No. supplied	Code no.
Related products HiTrap Desalting	No. supplied 5 × 5 ml	Code no. 17-1408-01
Related products HiTrap Desalting	No. supplied 5 × 5 ml 100 × 5 ml ¹	Code no. 17-1408-01 11-0003-29
Related products HiTrap Desalting HiPrep 26/10 Desalting	No. supplied 5 × 5 ml 100 × 5 ml ¹ 1 × 20 ml	Code no. 17-1408-01 11-0003-29 17-5087-01
Related products HiTrap Desalting HiPrep 26/10 Desalting	No. supplied 5 × 5 ml 100 × 5 ml ¹ 1 × 20 ml 4 × 20 ml	Code no. 17-1408-01 11-0003-29 17-5087-01 17-5087-02

¹ Special pack size delivered on specific customer order.

Accessories	No. Supplied	Code No.
1/16" male/luer female1	2	18-1112-51
Tubing connector flangeless/M6 female ¹	2	18-1003-68
Tubing connector flangeless/M6 male ¹	2	18-1017-98
Union 1/16" female/M6 male1	6	18-1112-57
Union M6 female /1/16" male ¹	5	18-3858-01
Union luerlock female/M6 female	2	18-1027-12
HiTrap/HiPrep, 1/16" male connector for ÄKTA design	8	28-4010-81
Stop plug female, 1/16"2	5	11-0004-64
Fingertight stop plug, 1/16"3	5	11-0003-55

¹ One connector included in each HiTrap package.

² Two, five, or seven stop plugs female included in HiTrap packages depending on the product.

³ One fingertight stop plug is connected to the top of each HiTrap column at delivery.

Related literature	Code No.
Recombinant Protein Purification Handbook, Principle and Methods	18-1142-75
Affinity Chromatography Handbook, Principle and Methods	18-1022-29
Affinity Chromatography Columns and Media, Selection Guide	18-1121-86
Prepacked chromatography columns for ÄKTA design, Selection Guide	28-9317-78
HiTrap Column Guide	18-1129-81

For your local office contact information, visit please visit: www.gelifesciences.com/contact	GE Healthcare Europe GmbH Munzinger Strasse 5, D-79111 Freiburg, Germany
GE Healthcare Bio-Sciences AB Björkgatan 30 751 84 Uppsala Sweden	GE Healthcare UK Ltd Amersham Place Little Chalfont Buckinghamshire, HP7 9NA UK
www.gelifesciences.com/hitrap www.gelifesciences.com/protein-purification	GE Healthcare Bio-Sciences Corp 800 Centennial Avenue P.O. Box 1327 Piscataway, NJ 08855-1327 USA
	GE Healthcare Bio-Sciences KK Sanken Bldg. 3-25-1, Hyakunincho Shinjuku-ku, Tokyo 169-0073 Japan

GE, imagination at work and GE monogram are trademarks of General Electric Company.

HiTrap, HiPrep, Sepharose, FPLC, Drop Design, ÄKTA, Sephadex, MidiTrap and MiniTrap are trademarks of GE Healthcare companies.

Licensing information

Purification and preparation of fusion proteins and affinity peptides comprising at least two adjacent histidine residues may require a license under US patent numbers 5,284,933 and 5,310,663, and equivalent patents and patent applications in other countries (assignee: Hoffman La Roche, Inc).

© 1995–2009 General Electric Company – All rights reserved. Previously published May 1995.

All goods and services are sold subject to the terms and conditions of sale of the company within GE Healthcare which supplies them. A copy of these terms and conditions is available on request. Contact your local GE Healthcare representative for the most current information.

imagination at work